• Title/Summary/Keyword: Chemical profiling

Search Result 133, Processing Time 0.027 seconds

Dynamic Gene Expression Profiling of Escherichia coli in Carbon Source Transition from Glucose to Acetate

  • Oh Min-Kyu;Cha Mee-Jeong;Lee Sun-Gu;Rohlin Lars;Liao James C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.543-549
    • /
    • 2006
  • DNA microarray was used to study the transcription profiling of Escherichia coli adapting to acetate as a sole carbon source. Bacteria grown in glucose minimal media were used as a reference. The dynamic expression levels of 3,497 genes were monitored at seven time points during this adaptation. Among the central metabolic genes, the glycolytic and glucose phosphotransferase genes were repressed as the bacteria entered stationary phase, whereas the glyoxylate pathway, TCA cycle, and gluconeogenic genes were induced. Distinct induction or repression patterns were recognized among different pathway genes. For example, the repression of glycolytic genes and the induction of gluconeogenic ones started immediately after glucose was depleted. On the other hand, the regulation of the pentose phosphate pathway genes and glyoxylate genes gradually responded to the glucose depletion or was more related to growth in acetate. When the whole genome was considered, many of the CRP, FadR, and Cra regulons were immediately responsive to the glucose depletion, whereas the $\sigma^s$, Lrp, and IHF regulons were gradually responsive to the glucose depletion. The expression profiling also provided differential regulations between isoenzymes; for example, malic enzymes A (sfcA) and B (maeB). The expression profiles of three genes were confirmed with RT-PCR.

Chemical kinomics: a powerful strategy for target deconvolution

  • Kim, Do-Hee;Sim, Tae-Bo
    • BMB Reports
    • /
    • v.43 no.11
    • /
    • pp.711-719
    • /
    • 2010
  • Kinomics is an emerging and promising approach for deciphering kinomes. Chemical kinomics is a discipline of chemical genomics that is also referred to as "chemogenomics", which is derived from chemistry and biology. Chemical kinomics has become a powerful approach to decipher complicated phosphorylation-based cellular signaling networks with the aid of small molecules that modulate kinase functions. Moreover, chemical kinomics has played a pivotal role in the field of kinase drug discovery as it enables identification of new molecular targets of small molecule kinase modulators and/or exploitation of novel functions of known kinases and has also provided novel chemical entities as hit/lead compounds. In this short review, contemporary chemical kinomics technologies such as activity-based protein profiling, T7 kinasetagged phages, kinobeads, three-hybrid systems, fluorescenttagged kinase binding assays, and chemical genomic profiling are discussed along with a novel allosteric Bcr-Abl kinase inhibitor (GNF-2/GNF-5) as a successful application of chemical kinomics approaches.

Study of Metabolic Profiling Changes in Colorectal Cancer Tissues Using 1D 1H HR-MAS NMR Spectroscopy

  • Kim, Siwon;Lee, Sangmi;Maeng, Young Hee;Chang, Weon Young;Hyun, Jin Won;Kim, Suhkmann
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1467-1472
    • /
    • 2013
  • Metabolomics is a field that studies systematic dynamics and secretion of metabolites from cells to understand biological pathways based on metabolite changes. The metabolic profiling of intact human colorectal tissues was performed using high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, which was unnecessary to extract metabolites from tissues. We used two different groups of samples, which were defined as normal and cancer, from 9 patients with colorectal cancer and investigated the samples in NMR experiments with a water suppression pulse sequence. We applied target profiling and multivariative statistical analysis to the analyzed 1D NMR spectra to identify the metabolites and discriminate between normal and cancer tissues. Cancer tissue showed higher levels of arginine, betaine, glutamate, lysine, taurine and lower levels of glutamine, hypoxanthine, isoleucine, lactate, methionine, pyruvate, tyrosine relative to normal tissue. In the OPLS-DA (orthogonal partial least square discriminant analysis), the score plot showed good separation between the normal and cancer groups. These results suggest that metabolic profiling of colorectal cancer could provide new biomarkers.

Mass spectrometry-based ginsenoside profiling: Recent applications, limitations, and perspectives

  • Hyun Woo Kim;Dae Hyun Kim;Byeol Ryu;You Jin Chung;Kyungha Lee;Young Chang Kim;Jung Woo Lee;Dong Hwi Kim;Woojong Jang;Woohyeon Cho;Hyeonah Shim;Sang Hyun Sung;Tae-Jin Yang;Kyo Bin Kang
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.149-162
    • /
    • 2024
  • Ginseng, the roots of Panax species, is an important medicinal herb used as a tonic. As ginsenosides are key bioactive components of ginseng, holistic chemical profiling of them has provided many insights into understanding ginseng. Mass spectrometry has been a major methodology for profiling, which has been applied to realize numerous goals in ginseng research, such as the discrimination of different species, geographical origins, and ages, and the monitoring of processing and biotransformation. This review summarizes the various applications of ginsenoside profiling in ginseng research over the last three decades that have contributed to expanding our understanding of ginseng. However, we also note that most of the studies overlooked a crucial factor that influences the levels of ginsenosides: genetic variation. To highlight the effects of genetic variation on the chemical contents, we present our results of untargeted and targeted ginsenoside profiling of different genotypes cultivated under identical conditions, in addition to data regarding genome-level genetic diversity. Additionally, we analyze the other limitations of previous studies, such as imperfect variable control, deficient metadata, and lack of additional effort to validate causation. We conclude that the values of ginsenoside profiling studies can be enhanced by overcoming such limitations, as well as by integrating with other -omics techniques.

Small-molecule probes elucidate global enzyme activity in a proteomic context

  • Lee, Jun-Seok;Yoo, Young-Hwa;Yoon, Chang No
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • The recent dramatic improvements in high-resolution mass spectrometry (MS) have revolutionized the speed and scope of proteomic studies. Conventional MS-based proteomics methodologies allow global protein profiling based on expression levels. Although these techniques are promising, there are numerous biological activities yet to be unveiled, such as the dynamic regulation of enzyme activity. Chemical proteomics is an emerging field that extends these types proteomic profiling. In particular, activity-based protein profiling (ABPP) utilizes small-molecule probes to monitor enzyme activity directly in living intact subjects. In this mini-review, we summarize the unique roles of smallmolecule probes in proteomics studies and highlight some recent examples in which this principle has been applied.