• Title/Summary/Keyword: Chemical process industry

Search Result 679, Processing Time 0.03 seconds

Assessment of Best Available Technology of Wastewater Treatment Facilities in Leather Tanning and Finishing Industry (가죽, 모피가공 및 제조시설의 폐수처리시설 BAT평가)

  • Kim, Youngnoh;Lim, Byungjin;Kwon, Osang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The effluent limitations for individual industry based on the best available technology economically achievable (BAT) have been required to achieve effective regulation. BAT assessment criteria that are suitable for the circumstances of Korean industry were developed in the previous study. The criteria were applied to determine the BAT for leather tanning and finishing industry. For the evaluation BAT, a subcategorization for the industry considering wastewater characteristics, source equipments, raw material and so on should be suggested. Three subcategories: A) Unharing, Chrome Tan, Retan-Wet Finish, B) Chrome Tan, Retan-Wet Finish, and C) Furskins were proposed in this study. Wastewater discharged from the each category contains high concentration of COD, chrome, nitrogen and sulfide. In particular, the concentration of nitrogen from the subcategory A is significantly greater. Twenty sites were surveyed and wastewater qualities were analyzed. Therefore, six different technologies were applied to the subcategory A for the end-of-pipe treatment technology, and a technology was used in the subcategory B and C, respectively. The technology candidates were evaluated in terms of environmental impacts, economically achievability, treatment performance and economical reasonability. As the result, the technology options for each subcategories: A) primary chemical precipitation + modified Ludzack-Ettinger process (MLE) + secondary chemical precipitation, B) chemical precipitation + typical activated-sludge process + Fenton oxidation, C) chemical precipitation + typical activated-sludge process + batch Fenton oxidation or batch activated carbon treatment were selected as the BAT, respectively.

Chemical Use and Associated Health Concerns in the Semiconductor Manufacturing Industry

  • Yoon, Chungsik;Kim, Sunju;Park, Donguk;Choi, Younsoon;Jo, Jihoon;Lee, Kwonseob
    • Safety and Health at Work
    • /
    • v.11 no.4
    • /
    • pp.500-508
    • /
    • 2020
  • Background: Research on the status of many chemicals used in the semiconductor industry is needed. The purpose of this study was to describe the overall status of chemical use in the semiconductor industry in Korea and to examine it from a health perspective. Methods: Data on the status of chemical use and safety data sheets at 11 of 12 major semiconductor workplaces in Korea were collected. The number of chemical products and chemical constituents, quantities of chemicals, and trade secret ingredients used, as well as the health hazards were examined. Results: On average, 210 chemical products and 135 chemical constituents were used at the surveyed workplaces. Among all chemical products, 33% (range: 16-56%) contained at least one trade secret ingredient. Most of the trade secret ingredients were used in the photolithography process. Several carcinogens, including sulfuric acid, chromic acid, ethylene oxide, crystalline silica, potassium dichromate, and formaldehyde were also used. Only 29% (39 of 135) of the chemical constituents had occupational exposure limits, and more than 60% had no National Fire Protection Association health, safety, and reactivity ratings. Based on the aforementioned results, this study revealed the following. First, many chemical products and constituents are being used in the semiconductor industry and many products contained trade secret ingredients. Second, many products contained significant amounts of carcinogenic, mutagenic, and reproductive toxicant materials. Conclusion: We conclude that protecting workers in the semiconductor industry against harm from chemical substances will be difficult, due to widespread use of trade secret ingredients and a lack of hazard information. The findings of the status of chemical use and the health and safety risks in semiconductor industry will contribute to epidemiological studies, safe workplace, and worker health protection.

Effects of Chemical Accident Risk Warning System in High Risk Workplaces of Major Industrial Accidents (중대산업사고 고위험 사업장에서의 화학사고위험경보제의 효과)

  • Woo Sub Shim;Ji Ung Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.765-774
    • /
    • 2023
  • The Ministry of Employment and Labor implemented the process safety management(PSM) system from 1996 to prevent major industrial accidents caused by chemical substances, but the number of accidents did not drastically decrease. Even in workplaces with excellent PSM ratings, large-scale chemical accidents still occur due to non-compliance with safety work procedures and insufficient safety measures during maintenance and other work. Accordingly, the chemical accident risk warning system was introduced in 2014 to supplement the PSM system and prevent accidents that may occur during regular or unexpected maintenance and repair work. In the meantime, changes in the safety management system have been checked since the introduction of the chemical accident risk warning system at chemical handling workplaces, and based on the results, a plan for upgrading this system has been proposed. The effect of the CARW system was found to directly prevent accidents through wired and on-site consulting and post-management at the workplace and indirectly contribute to the establishment of a safety and health management system at the workplace, such as improving safety culture awareness.

Dynamic Simulation of Retention and Formation Processes of a Pilot Paper Machine

  • Cho, Byoung-Uk;Garnier, Gil;Perrier, Michel
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.8-15
    • /
    • 2007
  • In an effort to develop control strategies for the wet-end of paper machines, dynamic models for retention and formation processes have been developed. The retention process, including headbox total and filler consistencies, white water total and filler consistencies, the basis weight and the ash content of paper, can be modeled from first-principles (mass balances). To include the effect of wet-end chemistry variables, first-pass retention was included as a parameter dependent on operating conditions. In addition, dynamics of formation was simulated by developing an empirical model of formation and coupling with the dynamic models for the retention process. A series of experiments were performed using a pilot paper machine. The experimental results and the model predictions showed relatively good agreement.

Synthesis and Biological Evaluation of N-(Aminopyridine) Benzamide Analogues as Histone Deacetylase Inhibitors

  • Zhang, Qing-Wei;Li, Jian-Qi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.535-540
    • /
    • 2012
  • A series of benzamide-based histone deacetylases (HDACs) inhibitors possessing N-(aminopyridine) residue as the zinc binding site of HDAC were synthesized and evaluated. Among these derivatives, compounds with N-(2-amino-4-pyridine) benzamide moiety have been found as the most potent ones. Moreover, introduction of appropriate substituents on the terminal aryl group acting as the surface-recognition domain could significantly improve the antiproliferative activity. In particular, the compound 4k possessed favorable pharmacokinetic characteristics and exhibited potent antitumor activity on xenograft model in mice at well tolerated doses, thus suggesting a good therapeutic index.

Case Study of Safety Management at Small Industry Handling Hazardous Chemicals (유해화학물 취급 중소기업 시설 관리실태 현황 및 개선방안)

  • Song, Eunhee;Lee, Donghoon;Cho, Youngho;Kwak, Dongho;Park, Kyoshik
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • Small and medium industry facility handling hazardous chemicals was inspected and summarized. The inspection results were summarized in four categories such as hazards to process, storage, workers, and the others. The result was applied to further improvement of the facility. In conclusion, the industry intented to satisfy minimum requirement of regulation and they do not pay attention to keep maintaining the facility in integrity condition.

Assessment of Best Available Technology of Wastewater Treatment Facilities in Petrochemical Basic Compound Manufacturing and Plastics and Synthetic Resins Manufacturing (석유화학계 기초화합물 제조시설과 합성수지 및 기타 플라스틱물질 제조시설의 폐수처리시설 BAT평가)

  • Kim, Youngnoh;Lim, Byungjin;Kwon, Osang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • The effluent limitations for individual industry based on the best available technology economically achievable (BAT) have been required to achieve effective regulation. BAT assessment criteria that are suitable for the circumstances of Korean industry were developed in the previous study. The criteria were applied to determine the BAT for petrochemical basic compound manufacturing (PBCM) and plastics and synthetic resins manufacturing (PSRM) industry. Wastewater discharged from the each category contains high concentration of COD and toluene. Eighteen sites were surveyed and wastewater qualities were analyzed. Six and two different technologies were applied to the PBCM and PSRM industry for the end-of-pipe treatment process, respectively. The technology candidates were evaluated in terms of environmental impacts, economically achievability, treatment performance and economical reasonability. As the result, the technology options: typical activated-sludge process + sand filtration + activated carbon adsorption (PBCM) and wet oxidation + chemical precipitation + typical activated-sludge process + chemical precipitation (PSRM) were selected as the BAT for each industry.

Analysis of Efficiency of Bacillus subtilis To Treat Bagasse Based Paper and Pulp Industry Wastewater-A Novel Approach

  • Karichappan, Thirugnanasambandham;Venkatachalam, Sivakumar;Jeganathan, Prakash Maran
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.2
    • /
    • pp.198-204
    • /
    • 2014
  • In this present study, bagasse based pulp and paper industry wastewater was treated under different operating conditions such as initial pH (6-8), temperature ($25-35^{\circ}C$) and contact time (3-7 days) by using Bacillus subtilis. Response surface methodology (RSM) coupled with Box-Behnken response surface design (BBD) was employed to investigate the effect of process variables on the responses such as turbidity, biological oxygen demand (BOD) and chemical oxygen demand (COD) removal. The experimental data were analyzed by Pareto analysis of variance (ANOVA) and the second order polynomial models were developed. Interactive effects of the process variables on the responses were studied using plotting 3D response surface contour graph and the optimum process conditions were found to be: initial pH of 7, temperature of $30^{\circ}C$ and contact time of 5 days. Under these conditions, removal efficiencies of turbidity, BOD and COD were found to be 85%, 93% and 80% respectively which are close agreement with real experiments. These results indicate that the treatment of bagasse based pulp and paper industry wastewater using Bacillus subtilis is an effective and novel technique.

Membrane Application in Biochemical Industry (바이오 화학산업에서의 분리막 응용)

  • Kim, In-Chul;Song, Doo-Hyun;Um, In-Young;Jegal, Jonggeon;Hong, Keong-Sik;Yoo, Joo-Hyeon;Song, Bong-Keun
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.79-87
    • /
    • 2014
  • Recently, membranes are used for separation of biochemicals in biochemical industry. In this study, there is a special focus on the research that has been applied for membranes in the biochemical industry. Especially, membrane applications for pretreatment and fermentation process were also reviewed. Separation and purification of various biochemicals by membranes has been conducted. Membrane applications for biorefinery using lignocellulose were also reviewed.

A Study on the Cu2+ Behavior in Activated Sludge Process (활성슬러지공정에서 구리의 거동에 관한 연구)

  • Park, Jin-Do;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.19 no.9
    • /
    • pp.1119-1127
    • /
    • 2010
  • The behavior of copper throughout the whole process of wastewater treatment plant that uses the activated sludge process to treat the wastewater of petrochemical industry that contains low concentration of copper was investigated. Total inflow rate of wastewater that flows into the aeration tank was $697\;m^3$/day with 0.369 mg/L of copper concentration, that is, total copper influx was 257.2 g/day. The ranges of copper concentrations of the influent to the aeration tank and effluent from the one were 0.315 ~ 0.398 mg/L and 0.159 ~ 0.192 mg/L, respectively. The average removal rate of copper in the aeration tank was 50.8 %. The bioconcentration factor (BCF) of copper by microbes in the aeration tank was 3,320. The accumulated removal rate of copper throughout the activated sludge process was 71.3%, showing a high removal ratio by physical and chemical reactions in addition to biosorption by microbes. The concentration of copper in the solid dehydrated by filter press ranged from 74.8 mg/kg to 77.2 mg/kg and the concentration of copper by elution test of waste was 2.690 ~ 2.920 mg/L. It was judged that the copper concentration in dehydrated solid by bioconcentration could be managed with the control of that in the influent.