DOI QR코드

DOI QR Code

Membrane Application in Biochemical Industry

바이오 화학산업에서의 분리막 응용

  • Kim, In-Chul (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Song, Doo-Hyun (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Um, In-Young (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Jegal, Jonggeon (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Hong, Keong-Sik (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Yoo, Joo-Hyeon (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Song, Bong-Keun (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology)
  • 김인철 (한국화학연구원 바이오화학연구센터) ;
  • 송두현 (한국화학연구원 바이오화학연구센터) ;
  • 엄인용 (한국화학연구원 바이오화학연구센터) ;
  • 제갈종건 (한국화학연구원 바이오화학연구센터) ;
  • 홍경식 (한국화학연구원 바이오화학연구센터) ;
  • 유주현 (한국화학연구원 바이오화학연구센터) ;
  • 송봉근 (한국화학연구원 바이오화학연구센터)
  • Received : 2014.03.26
  • Accepted : 2014.04.24
  • Published : 2014.04.30

Abstract

Recently, membranes are used for separation of biochemicals in biochemical industry. In this study, there is a special focus on the research that has been applied for membranes in the biochemical industry. Especially, membrane applications for pretreatment and fermentation process were also reviewed. Separation and purification of various biochemicals by membranes has been conducted. Membrane applications for biorefinery using lignocellulose were also reviewed.

최근 바이오 화학산업, 특히 바이오 리파이너리를 위한 발효공정에서 물질 분리를 위하여 분리막이 적용되고 있다. 이에 본 논문에서는 바이오 화학산업에서 분리막을 응용하고 있는 연구들을 살펴보고자 한다. 특히 전처리로서의 분리막 응용과 발효산물의 분리막 응용을 알아보았다. 다양한 바이오 물질의 분리 및 정제를 위한 공정에서 분리막의 사용을 알아보고 특히 리그노셀룰로스를 이용한 바이오 리파이너리에서의 분리막 사용을 강조하였다.

Keywords

References

  1. S. Ramaswamy, H. J. Huang, and B. V. Ramarao, "Separation and Purification Technologies in Biorefineries", Wiley (2013).
  2. D. Yu, "Catalysis in biomass processing", Catalysis in industry, 3, 218 (2011). https://doi.org/10.1134/S207005041103007X
  3. B. Kamm, "Principles of biorefineries", Appl. Microbiol. Biotechnol., 64, 137 (2004). https://doi.org/10.1007/s00253-003-1537-7
  4. Th. Willke, "Industrial bioconversion of renewable resources as an alternative to conventional chemistry", Appl. Microbiol. Biotechnol., 66, 131 (2004). https://doi.org/10.1007/s00253-004-1733-0
  5. W. J. Lee and K. Y. Chung, "Biodiesel Production using Microfiltration Tubular Membrane", Membrane Journal., 20, 113 (2010).
  6. H. C. Koh, S. Y. Ha, S. M. Woo, S. Y. Nam, B. S. Lee, C. S. Lee, and W. M. Choi, "Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module", Membrane Journal., 21, 177 (2011).
  7. M. H. Cho, C. G. Kong, and Y. T. Lee, "Perva-poration of n-Butanol/water Mixture through Organophilic ZSM-5 Zeolite Membrane", Membrane Journal., 21, 336 (2011).
  8. I. Dogaris, "Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?", 97, 1457 (2013). https://doi.org/10.1007/s00253-012-4655-2
  9. M. Gavrilescu, "Biotechnology-a sustainable alternative for chemical industry", Biotechnology Advances, 23, 471 (2005). https://doi.org/10.1016/j.biotechadv.2005.03.004
  10. I. I. Moiseev, "Green chemistry in the bulk chemicals industry", Kinetics and catalysis, 52, 337 (2011). https://doi.org/10.1134/S0023158411030141
  11. J. R. M. Almeida, "Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste", Biotechnolgy for biofuels, 5, 1 (2012). https://doi.org/10.1186/1754-6834-5-1
  12. B. C. Saha, "Hemicellulose biocoversion", J. Ind. Microbiol. Biotechnol., 30, 279 (2003). https://doi.org/10.1007/s10295-003-0049-x
  13. R. P. John, "Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives", Appl. Microbiol. Biotechnol., 74, 524 (2007). https://doi.org/10.1007/s00253-006-0779-6
  14. M. H. Toivari, "Microbial D-xylonate production", Appl. Microbiol. Biotechnol., 96, 1 (2012). https://doi.org/10.1007/s00253-012-4288-5
  15. C. S. Dhillon, "Recent advances in citric acid bio-production and recovery", Food Bioprocess Technol., 4, 505 (2011). https://doi.org/10.1007/s11947-010-0399-0
  16. S. Kind, "Bio-based production of the platform chemical 1,5-diaminopentane", Appl. Microbiol. Biotechnol., 91, 1287 (2011). https://doi.org/10.1007/s00253-011-3457-2
  17. I. Bechthold, "Succinic acid: a new platform chemicals for biobased polymers from renewable resources", Chem. Eng. Technol., 31, 647 (2008). https://doi.org/10.1002/ceat.200800063
  18. R. P. Babu, "Current progress on biobased polymers and their future trends", Progress in Biomaterials, 2, 1 (2013). https://doi.org/10.1186/2194-0517-2-1
  19. M. Flieger, "Biodegradable plastics from renewable sources", Folia Microbiol, 48, 27 (2003). https://doi.org/10.1007/BF02931273
  20. K. Matsumoto, "Enzymatic and whole-cell synthesis of lactate-containing polyesters: toward the complete biological production of polylactate, Microbial D-xylonate production", Appl. Microbiol. Biotechnol., 85, 921 (2010). https://doi.org/10.1007/s00253-009-2374-0
  21. C. Zhang, "Current progress on butyric acid production by fermentation", Curr. Microbiol., 59, 656 (2009). https://doi.org/10.1007/s00284-009-9491-y
  22. P. Weilands, "Biogas production: current state and perspectives", Appl. Microbiol. Biotechnol., 85, 849 (2010). https://doi.org/10.1007/s00253-009-2246-7
  23. Z. Bagi, "Biotechnological intensification of biogas production", Appl. Microbiol. Biotechnol., 76, 473 (2007). https://doi.org/10.1007/s00253-007-1009-6
  24. K. Nath, "Improvement of fermentative hydrogen production: various approaches", Appl. Microbiol. Biotechnol., 65, 520 (2004).
  25. J. Zhou, "Extraction and separation of D/L lactic acid in simulated fermentation broth", Korean J. Chem. Eng., 28, 1608 (2011). https://doi.org/10.1007/s11814-011-0010-z
  26. Z. L. Xiu, "Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,4-butanediol", Appl. Microbiol. Biotechnol., 78, 917 (2008). https://doi.org/10.1007/s00253-008-1387-4
  27. F. S. Mendes, "1,3-propanediol production in a two-step process fermentation from renewable feedstock", Appl. Microbiol. Biotechnol., 92, 519 (2011). https://doi.org/10.1007/s00253-011-3369-1
  28. K. K. Cheng, "Downstream processing of biotechnological produced succinic acid", Appl. Microbiol. Biotechnol., 95, 841 (2012). https://doi.org/10.1007/s00253-012-4214-x
  29. Y. K. Hong, "Selective extraction of succinic acid from binary mixture of succinic acid and acetic acid", Biotechnolgy Letters, 22, 871 (2000). https://doi.org/10.1023/A:1005627816323
  30. J. G. Zeikus, "Biotechnology of succinic acid production and markets for derived industrial products", Appl. Microbiol. Biotechnol., 51, 545 (1999). https://doi.org/10.1007/s002530051431
  31. S. Walton, A. V. Heiningen, and P.V. Walsum, "Inhibition effects on fermentation of hardwood extracted hemicelluloses by acetic acid and sodium", Bioresource Technol., 101(1), 1935 (2010). https://doi.org/10.1016/j.biortech.2009.10.043
  32. R. H. Leonard and G.J . Hajny, "Fermention of wood sugars to ethyl alcohol", Ind. Eng. Chem., 37, 390 (1945). https://doi.org/10.1021/ie50424a025
  33. A. C. S. Michel, S. H. Flores, and P. F. Hertz, "Production of ethanol from soybean hull hydrolyzate by osmotolerant Candida guilliermondii NRRL Y-2075", Bioresource Technol., 99, 2898 (2008). https://doi.org/10.1016/j.biortech.2007.06.042
  34. B. H. Um, B. Freeman, and G. P. V. Walsum, "Conditioning hardwood-derived pre-pulping extracts for use in fermentation through removal and recovery of acetic acid using trioctylphosphine oxide (TOPO)", Holzforschung, 65, 51 (2011).
  35. I. M. Demancilha and M. N. Karim, "Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation", Biotechnol. prog., 19, 1837 (2003). https://doi.org/10.1021/bp034069x
  36. H. Sreenath and T. W. Jeffries, "Production of ethanol from wood hydrolyzate by yeasts", Bioresource Technol., 72, 253 (2000). https://doi.org/10.1016/S0960-8524(99)00113-3
  37. A. Hasan, L. R. Yasarla, B. V. Ramarao, and T. E. Amidon, "Saparation of Lignocellulosic Hydrolyzate Components Using Ceramic Microfilters", J. Wppd. Chem. Tech., 31(4), 357 (2011).
  38. N. Okuda, M. Soneura, and K. Ninomiya, "Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production", J. Biosci. Bioeng., 106, 128 (2008). https://doi.org/10.1263/jbb.106.128
  39. E. Sjoman, "Separation of xylose from glucose by nanofiltration from concentrated monosaccharide solutions", J. Memb. Sci., 202, 106 (2007).
  40. E. Sjoman, "Xylose recovery by nanofiltration from different hemicellulose hydrolyzate feeds", J. Memb. Sci., 310, 268 (2008). https://doi.org/10.1016/j.memsci.2007.11.001
  41. I. Catarino, "Assessment of saccharide fractionation by ultrafiltration and nanofiltration", J. Memb. Sci., 312, 34 (2008). https://doi.org/10.1016/j.memsci.2007.12.057
  42. E. Sjoman, "Separation of xylose from glucose by nanofiltration from concentrated monosaccharide solutions", J. Memb. Sci., 202, 106 (2007).
  43. M. Minhalma, "Optimization of saccharide fractionation using nanofiltration/ultrafiltration", Desalination, 199, 337 (2006). https://doi.org/10.1016/j.desal.2006.03.079
  44. Y. S. Hwang, Y. H. Cho, and H. B. Park, "Preparation and Characterization of Nanofiltration Membranes for Recovery of Organic Acids from Fermentation Broth", Membrane Journal., 23, 304 (2013).
  45. T. E. Amidon and S. Liu, "Water-based woody biorefinery", Biotech. Adv., 27, 542 (2009). https://doi.org/10.1016/j.biotechadv.2009.04.012
  46. S. Liu, T. E. Amidon, and C. D. Wood, "Membrane filtration: Concentration and purification of hydrolyzates from biomass", DJ. Biobased Materials Bioenergy, 2(2), 121 (2008). https://doi.org/10.1166/jbmb.2008.303
  47. Y. H. Weng and C. P. Huang, "Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration", Biores. Technol., 101, 4889 (2010). https://doi.org/10.1016/j.biortech.2009.11.090
  48. C. Abels, "Membrane processes in biorefinery applications", J. Memb. Sci., 444, 285 (2013). https://doi.org/10.1016/j.memsci.2013.05.030
  49. H.J. Huang, "A review of separation technologies in current and future biorefineries", Separation & Purification Technol., 62, 1 (2008). https://doi.org/10.1016/j.seppur.2007.12.011
  50. C. Charcosset, "Membrane processes in biotechnology: An overview", Biotech. Adv., 24, 482 (2006). https://doi.org/10.1016/j.biotechadv.2006.03.002
  51. M. Pinelo, "Membrane technology for purification of enzymatically produced oligosaccharides: Molecular and operational features affecting performance", Separation and Purification Technol., 70, 1 (2009). https://doi.org/10.1016/j.seppur.2009.08.010
  52. S. Lutz, "Membranes in biotechnology", Chem. Eng. Technol., 29, 1404 (2006). https://doi.org/10.1002/ceat.200600232
  53. J. Li, "Applications of membrane techniques for purification of natutral products", Biotechnol. Lett., 32, 601 (2010). https://doi.org/10.1007/s10529-009-0199-7
  54. Q. Li and Z. Su, "One step recovery of succinic acid from fermentation broths by crystallization", Separation and Purification Technol., 72(3), 294 (2010). https://doi.org/10.1016/j.seppur.2010.02.021
  55. Y. S. Huh and W. H. Hong, "Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens", Process Biochemistry, 41(6), 1461 (2006). https://doi.org/10.1016/j.procbio.2006.01.020
  56. S. A. Ataei, "In situ separation of lactic acid from fermentation broth using ion exchange resins", J. Ind. Microbiol. Biotechnol., 35, 1229 (2008). https://doi.org/10.1007/s10295-008-0418-6
  57. F. S. Oliveira and I. M. Marrucho, "Extraction of l-lactic, l-malic, and succinic acids using phosphonium-based ionic liquids", Separation and Purification Technol., 85(2), 137 (2012). https://doi.org/10.1016/j.seppur.2011.10.002
  58. N. Tik, E. Bayraktar, and U. Mehmetoglu, "In situ reactive extraction of lactic acid from fermentation broth", J. Chem. Technol. Biotechnol., 76, 764 (2001). https://doi.org/10.1002/jctb.449
  59. A. Orjuela and D. J. Miller, "Mixed succinic acid/acetic acid esterification with ethanol by reactive distillation", Ind. and Eng. Chem. Res., 50, 9209 (2011). https://doi.org/10.1021/ie200133w
  60. S. H. Kang, "Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration", J. Memb. Sci., 246, 49 (2005). https://doi.org/10.1016/j.memsci.2004.08.014
  61. E. G. Lee, "Recovery of lactic acid from fermentation broth by the two-stage process of nanofiltration and water-splitting electrodialysis", Biotechnolgy and bioprocess engineering, 11, 313 (2006). https://doi.org/10.1007/BF03026246
  62. W. Timbuntam, "Application of bipolar electrodialysis on recovery of free lactic acid after simultaneous saccharification and fermentation of cassava starch", Biotechnol. Lett., 30, 1747 (2008). https://doi.org/10.1007/s10529-008-9771-9
  63. W. Boonkong, "Comparison of and ion exchanger and an in-house electrodialysis unit for recovery of L-lactic acid from fungal fermentation broth", Chem. Eng. Technol., 32, 1542 (2009). https://doi.org/10.1002/ceat.200900125
  64. T. V. Eliseeva, "Concentration of basic amino acids by electrodialysis", Pertroleum Chemistry, 51, 626 (2011). https://doi.org/10.1134/S0965544111080020
  65. T. Kurzrock, "Recovery of succinic acid from fermentation broth", Biotechnol. Lett., 32, 331 (2010). https://doi.org/10.1007/s10529-009-0163-6
  66. P. Dey, "Fermentative lactic acid production from a renewable carbon source under surface optimized conditions without alkali addition: a membrane-based green approach", Clean Techn. Environ. Policy, 14, 827 (2012). https://doi.org/10.1007/s10098-011-0448-z
  67. H. J. Huang, "A review of separation technologies in current and future biorefineries", Separation & Purification Technol., 62, 1 (2008). https://doi.org/10.1016/j.seppur.2007.12.011
  68. F. S. Mendes, "1,3-propanediol production in a two-step process fermentation from renewable feedstock", Appl. Microbiol. Biotechnol., 92, 519 (2011). https://doi.org/10.1007/s00253-011-3369-1
  69. P. Anand, "A novel downstream process for 1,3-propanediol from glycerol-based fermentation", Appl. Microbiol. Biotechnol., 90, 1267 (2011). https://doi.org/10.1007/s00253-011-3161-2