References
- S. Ramaswamy, H. J. Huang, and B. V. Ramarao, "Separation and Purification Technologies in Biorefineries", Wiley (2013).
- D. Yu, "Catalysis in biomass processing", Catalysis in industry, 3, 218 (2011). https://doi.org/10.1134/S207005041103007X
- B. Kamm, "Principles of biorefineries", Appl. Microbiol. Biotechnol., 64, 137 (2004). https://doi.org/10.1007/s00253-003-1537-7
- Th. Willke, "Industrial bioconversion of renewable resources as an alternative to conventional chemistry", Appl. Microbiol. Biotechnol., 66, 131 (2004). https://doi.org/10.1007/s00253-004-1733-0
- W. J. Lee and K. Y. Chung, "Biodiesel Production using Microfiltration Tubular Membrane", Membrane Journal., 20, 113 (2010).
- H. C. Koh, S. Y. Ha, S. M. Woo, S. Y. Nam, B. S. Lee, C. S. Lee, and W. M. Choi, "Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module", Membrane Journal., 21, 177 (2011).
- M. H. Cho, C. G. Kong, and Y. T. Lee, "Perva-poration of n-Butanol/water Mixture through Organophilic ZSM-5 Zeolite Membrane", Membrane Journal., 21, 336 (2011).
- I. Dogaris, "Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?", 97, 1457 (2013). https://doi.org/10.1007/s00253-012-4655-2
- M. Gavrilescu, "Biotechnology-a sustainable alternative for chemical industry", Biotechnology Advances, 23, 471 (2005). https://doi.org/10.1016/j.biotechadv.2005.03.004
- I. I. Moiseev, "Green chemistry in the bulk chemicals industry", Kinetics and catalysis, 52, 337 (2011). https://doi.org/10.1134/S0023158411030141
- J. R. M. Almeida, "Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste", Biotechnolgy for biofuels, 5, 1 (2012). https://doi.org/10.1186/1754-6834-5-1
- B. C. Saha, "Hemicellulose biocoversion", J. Ind. Microbiol. Biotechnol., 30, 279 (2003). https://doi.org/10.1007/s10295-003-0049-x
- R. P. John, "Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives", Appl. Microbiol. Biotechnol., 74, 524 (2007). https://doi.org/10.1007/s00253-006-0779-6
- M. H. Toivari, "Microbial D-xylonate production", Appl. Microbiol. Biotechnol., 96, 1 (2012). https://doi.org/10.1007/s00253-012-4288-5
- C. S. Dhillon, "Recent advances in citric acid bio-production and recovery", Food Bioprocess Technol., 4, 505 (2011). https://doi.org/10.1007/s11947-010-0399-0
- S. Kind, "Bio-based production of the platform chemical 1,5-diaminopentane", Appl. Microbiol. Biotechnol., 91, 1287 (2011). https://doi.org/10.1007/s00253-011-3457-2
- I. Bechthold, "Succinic acid: a new platform chemicals for biobased polymers from renewable resources", Chem. Eng. Technol., 31, 647 (2008). https://doi.org/10.1002/ceat.200800063
- R. P. Babu, "Current progress on biobased polymers and their future trends", Progress in Biomaterials, 2, 1 (2013). https://doi.org/10.1186/2194-0517-2-1
- M. Flieger, "Biodegradable plastics from renewable sources", Folia Microbiol, 48, 27 (2003). https://doi.org/10.1007/BF02931273
- K. Matsumoto, "Enzymatic and whole-cell synthesis of lactate-containing polyesters: toward the complete biological production of polylactate, Microbial D-xylonate production", Appl. Microbiol. Biotechnol., 85, 921 (2010). https://doi.org/10.1007/s00253-009-2374-0
- C. Zhang, "Current progress on butyric acid production by fermentation", Curr. Microbiol., 59, 656 (2009). https://doi.org/10.1007/s00284-009-9491-y
- P. Weilands, "Biogas production: current state and perspectives", Appl. Microbiol. Biotechnol., 85, 849 (2010). https://doi.org/10.1007/s00253-009-2246-7
- Z. Bagi, "Biotechnological intensification of biogas production", Appl. Microbiol. Biotechnol., 76, 473 (2007). https://doi.org/10.1007/s00253-007-1009-6
- K. Nath, "Improvement of fermentative hydrogen production: various approaches", Appl. Microbiol. Biotechnol., 65, 520 (2004).
- J. Zhou, "Extraction and separation of D/L lactic acid in simulated fermentation broth", Korean J. Chem. Eng., 28, 1608 (2011). https://doi.org/10.1007/s11814-011-0010-z
- Z. L. Xiu, "Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,4-butanediol", Appl. Microbiol. Biotechnol., 78, 917 (2008). https://doi.org/10.1007/s00253-008-1387-4
- F. S. Mendes, "1,3-propanediol production in a two-step process fermentation from renewable feedstock", Appl. Microbiol. Biotechnol., 92, 519 (2011). https://doi.org/10.1007/s00253-011-3369-1
- K. K. Cheng, "Downstream processing of biotechnological produced succinic acid", Appl. Microbiol. Biotechnol., 95, 841 (2012). https://doi.org/10.1007/s00253-012-4214-x
- Y. K. Hong, "Selective extraction of succinic acid from binary mixture of succinic acid and acetic acid", Biotechnolgy Letters, 22, 871 (2000). https://doi.org/10.1023/A:1005627816323
- J. G. Zeikus, "Biotechnology of succinic acid production and markets for derived industrial products", Appl. Microbiol. Biotechnol., 51, 545 (1999). https://doi.org/10.1007/s002530051431
- S. Walton, A. V. Heiningen, and P.V. Walsum, "Inhibition effects on fermentation of hardwood extracted hemicelluloses by acetic acid and sodium", Bioresource Technol., 101(1), 1935 (2010). https://doi.org/10.1016/j.biortech.2009.10.043
- R. H. Leonard and G.J . Hajny, "Fermention of wood sugars to ethyl alcohol", Ind. Eng. Chem., 37, 390 (1945). https://doi.org/10.1021/ie50424a025
- A. C. S. Michel, S. H. Flores, and P. F. Hertz, "Production of ethanol from soybean hull hydrolyzate by osmotolerant Candida guilliermondii NRRL Y-2075", Bioresource Technol., 99, 2898 (2008). https://doi.org/10.1016/j.biortech.2007.06.042
- B. H. Um, B. Freeman, and G. P. V. Walsum, "Conditioning hardwood-derived pre-pulping extracts for use in fermentation through removal and recovery of acetic acid using trioctylphosphine oxide (TOPO)", Holzforschung, 65, 51 (2011).
- I. M. Demancilha and M. N. Karim, "Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation", Biotechnol. prog., 19, 1837 (2003). https://doi.org/10.1021/bp034069x
- H. Sreenath and T. W. Jeffries, "Production of ethanol from wood hydrolyzate by yeasts", Bioresource Technol., 72, 253 (2000). https://doi.org/10.1016/S0960-8524(99)00113-3
- A. Hasan, L. R. Yasarla, B. V. Ramarao, and T. E. Amidon, "Saparation of Lignocellulosic Hydrolyzate Components Using Ceramic Microfilters", J. Wppd. Chem. Tech., 31(4), 357 (2011).
- N. Okuda, M. Soneura, and K. Ninomiya, "Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production", J. Biosci. Bioeng., 106, 128 (2008). https://doi.org/10.1263/jbb.106.128
- E. Sjoman, "Separation of xylose from glucose by nanofiltration from concentrated monosaccharide solutions", J. Memb. Sci., 202, 106 (2007).
- E. Sjoman, "Xylose recovery by nanofiltration from different hemicellulose hydrolyzate feeds", J. Memb. Sci., 310, 268 (2008). https://doi.org/10.1016/j.memsci.2007.11.001
- I. Catarino, "Assessment of saccharide fractionation by ultrafiltration and nanofiltration", J. Memb. Sci., 312, 34 (2008). https://doi.org/10.1016/j.memsci.2007.12.057
- E. Sjoman, "Separation of xylose from glucose by nanofiltration from concentrated monosaccharide solutions", J. Memb. Sci., 202, 106 (2007).
- M. Minhalma, "Optimization of saccharide fractionation using nanofiltration/ultrafiltration", Desalination, 199, 337 (2006). https://doi.org/10.1016/j.desal.2006.03.079
- Y. S. Hwang, Y. H. Cho, and H. B. Park, "Preparation and Characterization of Nanofiltration Membranes for Recovery of Organic Acids from Fermentation Broth", Membrane Journal., 23, 304 (2013).
- T. E. Amidon and S. Liu, "Water-based woody biorefinery", Biotech. Adv., 27, 542 (2009). https://doi.org/10.1016/j.biotechadv.2009.04.012
- S. Liu, T. E. Amidon, and C. D. Wood, "Membrane filtration: Concentration and purification of hydrolyzates from biomass", DJ. Biobased Materials Bioenergy, 2(2), 121 (2008). https://doi.org/10.1166/jbmb.2008.303
- Y. H. Weng and C. P. Huang, "Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration", Biores. Technol., 101, 4889 (2010). https://doi.org/10.1016/j.biortech.2009.11.090
- C. Abels, "Membrane processes in biorefinery applications", J. Memb. Sci., 444, 285 (2013). https://doi.org/10.1016/j.memsci.2013.05.030
- H.J. Huang, "A review of separation technologies in current and future biorefineries", Separation & Purification Technol., 62, 1 (2008). https://doi.org/10.1016/j.seppur.2007.12.011
- C. Charcosset, "Membrane processes in biotechnology: An overview", Biotech. Adv., 24, 482 (2006). https://doi.org/10.1016/j.biotechadv.2006.03.002
- M. Pinelo, "Membrane technology for purification of enzymatically produced oligosaccharides: Molecular and operational features affecting performance", Separation and Purification Technol., 70, 1 (2009). https://doi.org/10.1016/j.seppur.2009.08.010
- S. Lutz, "Membranes in biotechnology", Chem. Eng. Technol., 29, 1404 (2006). https://doi.org/10.1002/ceat.200600232
- J. Li, "Applications of membrane techniques for purification of natutral products", Biotechnol. Lett., 32, 601 (2010). https://doi.org/10.1007/s10529-009-0199-7
- Q. Li and Z. Su, "One step recovery of succinic acid from fermentation broths by crystallization", Separation and Purification Technol., 72(3), 294 (2010). https://doi.org/10.1016/j.seppur.2010.02.021
- Y. S. Huh and W. H. Hong, "Effective purification of succinic acid from fermentation broth produced by Mannheimia succiniciproducens", Process Biochemistry, 41(6), 1461 (2006). https://doi.org/10.1016/j.procbio.2006.01.020
- S. A. Ataei, "In situ separation of lactic acid from fermentation broth using ion exchange resins", J. Ind. Microbiol. Biotechnol., 35, 1229 (2008). https://doi.org/10.1007/s10295-008-0418-6
- F. S. Oliveira and I. M. Marrucho, "Extraction of l-lactic, l-malic, and succinic acids using phosphonium-based ionic liquids", Separation and Purification Technol., 85(2), 137 (2012). https://doi.org/10.1016/j.seppur.2011.10.002
- N. Tik, E. Bayraktar, and U. Mehmetoglu, "In situ reactive extraction of lactic acid from fermentation broth", J. Chem. Technol. Biotechnol., 76, 764 (2001). https://doi.org/10.1002/jctb.449
- A. Orjuela and D. J. Miller, "Mixed succinic acid/acetic acid esterification with ethanol by reactive distillation", Ind. and Eng. Chem. Res., 50, 9209 (2011). https://doi.org/10.1021/ie200133w
- S. H. Kang, "Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration", J. Memb. Sci., 246, 49 (2005). https://doi.org/10.1016/j.memsci.2004.08.014
- E. G. Lee, "Recovery of lactic acid from fermentation broth by the two-stage process of nanofiltration and water-splitting electrodialysis", Biotechnolgy and bioprocess engineering, 11, 313 (2006). https://doi.org/10.1007/BF03026246
- W. Timbuntam, "Application of bipolar electrodialysis on recovery of free lactic acid after simultaneous saccharification and fermentation of cassava starch", Biotechnol. Lett., 30, 1747 (2008). https://doi.org/10.1007/s10529-008-9771-9
- W. Boonkong, "Comparison of and ion exchanger and an in-house electrodialysis unit for recovery of L-lactic acid from fungal fermentation broth", Chem. Eng. Technol., 32, 1542 (2009). https://doi.org/10.1002/ceat.200900125
- T. V. Eliseeva, "Concentration of basic amino acids by electrodialysis", Pertroleum Chemistry, 51, 626 (2011). https://doi.org/10.1134/S0965544111080020
- T. Kurzrock, "Recovery of succinic acid from fermentation broth", Biotechnol. Lett., 32, 331 (2010). https://doi.org/10.1007/s10529-009-0163-6
- P. Dey, "Fermentative lactic acid production from a renewable carbon source under surface optimized conditions without alkali addition: a membrane-based green approach", Clean Techn. Environ. Policy, 14, 827 (2012). https://doi.org/10.1007/s10098-011-0448-z
- H. J. Huang, "A review of separation technologies in current and future biorefineries", Separation & Purification Technol., 62, 1 (2008). https://doi.org/10.1016/j.seppur.2007.12.011
- F. S. Mendes, "1,3-propanediol production in a two-step process fermentation from renewable feedstock", Appl. Microbiol. Biotechnol., 92, 519 (2011). https://doi.org/10.1007/s00253-011-3369-1
- P. Anand, "A novel downstream process for 1,3-propanediol from glycerol-based fermentation", Appl. Microbiol. Biotechnol., 90, 1267 (2011). https://doi.org/10.1007/s00253-011-3161-2