• Title/Summary/Keyword: Chemical leaching

Search Result 410, Processing Time 0.026 seconds

A Study on the Durability and Environmentally Friendly of Inorganic Grouting Material (무기질계 지반주입재의 내구성 및 친환경적 특성에 관한 연구)

  • Chun, Byungsik;Park, Dukhyum;Kang, Hyoungnam;Do, Jongnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.37-43
    • /
    • 2008
  • Inorganic injection material, which is one of the ground improvement materials, consists of cement accelerator and inorganic micro particle. The inorganic injection material is known to overcome the major limitations of water glass type improvement materials, which are leaching and accompanying strength loss. The inorganic injection material is superior in durability and strength, and environmentally friendly since leaching is prevented. In this study, the effectiveness and environment-friendliness of the MIS(Micro Injection-process System) using the inorganic injection material is compared to SGR, which uses the water glass. The performed tests were unconfined compression test, chemical resistance test, and fish poison test. The unconfined compression tests showed that the MIS results in 1.7 times higher 28 day strength compared to the SGR. In addition, the strength continually increased with time for the MIS, while it decreased for the SGR. The chemical resistance tests indicated that the rate of change in length using the MIS is 10~25 times smaller than when using the SGR. The fish poison test proved that MIS was more environmentally friendly. The analysis of chemical ingredients of leached showed that the amount of $Cr^{6+}$, Pb and Si leached from the MIS is less compared to the SGR. Accordingly, the MIS grout is more high-strength than existing SGR grout. It is excellent in shortening of construction period, structural stability of foundation and environmentally friendly. So, it is considered that it has not little the problem about groundwater pollution.

  • PDF

Stabilization of Heavy Metals in Glasses Containing EAF Dust (전기로 분진이 첨가된 유리의 중금속 안정화 특성)

  • Eun, Hee-Tai;Kang, Seung-Gu;Kim, Yoo-Taek;Lee, Gi-Kang;Kim, Jung-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.851-857
    • /
    • 2004
  • The stabilizing characteristics of heavy metals in the silicate glass (SD), borosilicate glass (BD), and leadsilicate glass (PD) containing Electric Arc furnace (EAF) dust were studied by the Toxic Characterization Leaching Procedure (TCLP) test. Also, the dependence of the amount of EAF dust upon structural changes of SD, BD, and PD glasses and the TCLP results were investigated by the XRD and FT-IR spectroscopy. In the XRD results, all of SD, BD, and PD specimens containing dust up to 30 wt% were amorphous without crystallizing. In the TCLP test, the concentration of heavy metals leached from the glasses increased with the amount of EAF dust added. The SD specimen series showed the lowest heavy metal leaching and the heavy metal leachate of the PD specimens were lower than those of the BD specimens. But, the Pb leaching from the PD specimens was the highest in the PD glass composition due to the high Pb content. The value of oxygen/network former ratio could be used to compare the chemical durability within the same glass series, but not proper to do between the different glass series. Adding the EAF dust to the SD mother glass, decreased the Si-O-Si symmetry and increased the non-bridging oxygen, which weakened the structure and decreased the chemical durability of glasses. In the BD series glasses, the addition of EAF dust caused the structural changes from tetra-borate group to di-borate group and the formation of the 2-dimensional layer structure of pyre- and ortho- borate, which decreased the chemical durability of glasses. It is concluded that SD series glass among the 3 kinds of glasses is the most effective to stabilize the heavy metals of EAF dust.

Preparation and Characterization of Mesoporous ${\gamma}-Al_2O_3$ Prepared from Kaolinite (카올린나이트로부터 중기공성 ${\gamma}-Al_2O_3$의 제조 및 특성)

  • Lee, Gwang-Hyeon;Go, Hyeong-Sin;Kim, Yun-Seop
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.845-852
    • /
    • 2000
  • Mesoporous ${\gamma}-Al_2O_3$ has been prepared by selective leaching of silica from calcined domestic kaolinite. From XRD and TG-DTA data, it was found that the microstructure of a spinel phase, consisting of ${\gamma}-Al_2O_3$ containing a small mount of amorphous silica, was obtained by calcining kaolinite samples at around $1000^{\circ}C$ for 24h. Porous ${\gamma}-Al_2O_3$ was prepared by selectively dissolving the amorphous silica in KOH solutions of 1~4M at temperatures of $25~90^{\circ}C$ for leaching time of 0.5~4h. In the case of the ${\gamma}-Al_2O_3$ obtained upon KOH treatment of 4M at $90^{\circ}C$ for 1h, it showed a very narrow unimodal pore size distribution, and also formed much mesopore at a diameter of around $40~80{\AA}$. The specific surface area was $250\textrm{m}^2/g$ and the total pore volume was $0.654\textrm{cm}^3/g$.

  • PDF

Leaching Characteristics and Potential Impact Assessment of Pollutants from Field Test Cells with Coal Bottom Ash as Fill Materials for Recycling (석탄 바닥재 메움재 재활용을 위한 Field Test Cells로부터 오염물질 배출 특성 및 잠재적 영향 평가)

  • Jang, Yong-Chul;Lee, Sungwoo;Kang, Heeseok;Lee, Seunghun
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.2
    • /
    • pp.135-145
    • /
    • 2013
  • The recycling of coal bottom ash generated from coal power plants in Korea has been limited due to heterogenous characteristics of the materials. The most common management option for the ash is disposal in landfills (i.e. ash pond) near ocean. The presence of large coarse and fine materials in the ash has prompted the desire to beneficially use it in an application such as fill materials. Prior to reuse application as fill materials, the potential risks to the environment must be assessed with regard to the impacts. In this study, a total of nine test cells with bottom ash samples collected from pretreated bottom ash piles and coal ash pond in a coal-fired power plant were constructed and operated under the field conditions to evaluate the leachability over a period of 210 days. Leachate samples from the test cells were analyzed for a number of chemical parameters (e.g., pH, salinity, electrical conductance, anions, and metals). The concentrations of chemicals detected in the leachate were compared to appropriate standards (drinking water standard) with dilution attenuation factor, if possible, to assess potential leaching risks to the surrounding area. Based on the leachate analysis, most of the samples showed slightly high pH values for the coal ash contained test cells, and contained several ions such as sodium, potassium, calcium, magnesium, chloride, sulfate, and nitrate in relatively large quantities. Three elements (aluminum, boron, and barium) were commonly detected above their respective detection limits in a number of leachate samples, especially in the early leaching period of time. The results of the test cell study indicate that the pollutants in the leachate from the coal ash test cells were not of a major concern in terms of leaching risk to surface water and groundwater under field conditions as fill materials. However, care must be taken in extending these results to actual applications because the results presented in this study are based on the limited field test settings and time frame. Structural characteristics and analysis for coal bottom ash may be warranted to apply the materials to actual field conditions.

Decomposition and Leaching of Bastnasite by Sulfation and Recovery of Cerium Hydroxide from Leached Solution (황산화반응에 의한 불탄산염 희토류광(Bastnasite)의 분해, 침출 및 세륨수산화물의 회수)

  • Yoon, Ho-Sung;Kim, Sung-Don;Kim, Chul-Joo;Kim, Jun-Soo;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.407-412
    • /
    • 1998
  • This study was carried out to investigate the optimum leaching conditions for the sulfation and water leaching, and separation of cerium from rare earth elements in leached solution by acid-adjusting method. The optimum conditions for the sulfation and water leaching from bastnasite concentrates are that the equivalent ration of sulfuric acid to concentrates is 2.5, calcination temperature and time are $600^{\circ}C$ and 2 hrs respectively, and the pulp density in the water leaching is 9.1%. The yield of rare earth oxide is about 93% at the above condition. The process of recovery of cerium hydroxide from leached solution by acid-adjusting method was carried out as following steps. The first step is the oxidation of the solution at pH 5 by using twice the equivalent of $H_2O_2$ solution as an oxidant. The second step is the precipitation to obtain cerium complex salt and cerium hydroxide after lowering the solution to pH 2. The last step is the oxidation-precipitation by using equivalent of $H_2O_2$ solution. From these results, it was possible to prepare cerium hydroxide with the yield of 60% and the quality of 80%.

  • PDF

Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area (페광산 복구지역 잔류장미로 인한 주변 지하수${\cdot}$토양 오염가능성-시흥광산 사례)

  • 정예진;이상훈
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.461-470
    • /
    • 2001
  • The Shihung mine was restored in the early 90's after abandonment for 20 yews since 1973. Although disposed mine tailings were removed and the site was replaced by an incineration plant, still some residual mine tailings remain in the places including the old mine tailing ditposal area and the adjacent agricultural area. These residual mine tailings are prone to impose an adverse impact on the soil and groundwater and needs investigation for the potential contamination. Mine tailing samples were collected from the old tailing disposal area and the iii paddy. The porewater from the mine tailing were extracted and analysed to investigate chemical changes along the reaction path. Batch leaching tests were also carried out in the laboratory to find any supporting evidence found in the field analysis. Evidence of elemental leaching was confirmed both by the mine tailing and the porewater chemistry in them. The element concentrations of Cu, Cd, Pb, Zn in the porewater exceed the standard for drinking water of Korean government and US EPA. Leaching of heavy metals from the mine tailing seem to be responsible for the contamination. In batch leaching test. heavy metals were either continuous1y released or declined rapidly. Combining the information with porewater variation with depths and the geochemical meodeling results, most of elements are controlled by dissolution and/or precipitation processes, with some solubility controlling solid phases (Cu, Pb, Fe and Zn). Batch leaching test conducted at fixed pH 4 showed much higher releases for the heavy metals up to 400 times (Zn) and this area is becoming more vulnerable to soil and groundwater pollution as precipitation pH shifts to acidic condition.

  • PDF

A Study on Leaching and Solvent Extraction for the Recovery of Copper Ore for Small-Scale Mining in Tanzania (탄자니아의 소규모 광산에서 구리광석 정제를 위한 침출 및 용매 추출에 관한 연구)

  • Soh, Soon-Young;Chun, Yong-Jin;Itika, Ambrose J.M.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.438-445
    • /
    • 2017
  • Tanzania has abundant copper deposits, but copper-metal extraction remains low there, owing to the lack of suitable copper recovery processes and insufficient funds for developing mining technologies. Accordingly, leaching and solvent extraction methods for the extraction of copper from copper ore were studied with a particular emphasis on developing a simple processing method for small-scale copper mining. Chrysocolla ore was used as the copper-bearing mineral and sulfuric acid was used as the leaching reagent. A maximum copper recovery of 95.1% was obtained when the particles in the sample were smaller than $53{\mu}m$, the concentration of 98%(w/w) sulfuric acid in the leaching solution was 5.0 g/L and the stirring rate was between 60 and 80 rpm. The highest selectivity of $Cu^2+$ in the solvent extraction was obtained using 15% LIX-70 in kerosene. In the pH range from 0.5 to 3.0, the efficiency of $Cu^2+$ extraction increased with increasing pH. However, at pH values higher than 3.0, other metal ions were extracted into the organic phase more readily than $Cu^2+$. The highest solvent extraction rate obtained was 96.5% at pH values of 2.0 and 3.0 using 15% LIX-70.

Recovery of Metallic Pd with High Purity from Pd/Al2O3 Catalyst by Hydrometallurgy in HCl (염산 침출용액을 이용한 Pd/Al2O3 촉매에서 고순도 팔라듐 회수)

  • Kim, Ye Eun;Byun, Mi Yeon;Baek, Jae Ho;Lee, Kwan-Young;Lee, Man Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.270-278
    • /
    • 2020
  • Palladium (Pd) has been widely used in various industrial applications such as jewelry, catalyst, and dental materials despite its limited resources. It has been gaining attention to recover Pd with high purity from the spent materials. This study investigated the optimum conditions for the leaching and recovery of metallic Pd. The leaching parameters are HCl concentration, temperature, time, concentration of oxidants, and pulp density. 97.2% of Pd leaching efficiency was obtained in 3 M HCl with 3 vol% oxidants at 80℃ for 60 min. The ratio of hydrogen peroxide to sodium hypochlorite played a critical role in the leaching efficiency due to the supply of Cl- ions in the leachate. Moreover, the complete recovery of Pd in the leachate was achieved at 80℃ with 0.3 formic acid/leachate after adjusting the pH value of 7. This situation was ascribed to the decomposition of formic acid into hydrogen gas and carbon dioxide at 80℃. ICP-AES and XRD characterized the recovered Pd powder, and the purity of the recovered powder was found to be 99.6%. Consequently, the recovered Pd powder with high purity could be used in circuits, catalyst precursors, and surgical instruments.

Changes of Performance of Soil-Cement Barrier due to Migration of Acids (산 이동에 따른 심층혼합기둥체 차수벽의 성능변화)

  • 정문경;천찬란;이주형;김강석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.189-196
    • /
    • 2003
  • Soil-cement column is often used as a contaminant barrier. This study presents the results of experimental study performed to investigate the changes of properties of soil-cement column under the attack of acids. Sulfuric nitric, and ascetic acid were used as contaminants. Specimen were made of clayey and sandy soils with addition of cement and water Permeability of soil-cement decreased with time during permeability test. When significant amount of acid percolated the specimen, permeability increased and compressive strength decreased due to the dissolution and leaching of cement and its chemical reaction compounds. Sulfuric and nitric acid were more effective than ascetic acid in deteriorating soil-cement column. Amount of acid required to lower the pH of soil cement below 12 was calculated from the results of permeability tests. This leads to a conclusion that, under the conditions employed in this study, the chemical stability of soil-cement column could be maintained against acid attack for longer than generally accepted lifetime of contaminant barriers.

  • PDF

Variation of Chemical Elements due to Hydrothermal Alteration of Kyungju Pyrophyllite Deposits (경주납석광상의 열수변질작용에 따른 원소함량의 변화)

  • Lee, Jae Yeong;Choi, Wook Jin;Kim, Jong Gun;Kim, Sang Wook
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • The Kyungju pyrophyllite deposits were formed by the hydrothermal alteration of andesitic rocks, which were intruded by Cretaceous granite mass. The major minerals are pyrophyllite, kaolinite and chlorite. The deposits may be zoned outward into pyrophyllite zone, silicified pyrophyllite zone and weakly altered zone (propyrilite zone) according to mineral assemblages. Chemical compositions vary in close relation with the mineralogical assemblages: $Al_2O_3$ content is high due to pyrophyllitization at the deposits and altered zones in comparison to andesitic country rocks, while the contents of $Na_2O$, CaO and MgO are generally low due to leaching during the alteration. This variation of chemical elements may be applicable in the geochemical exploration of pyrophyllite deposits.

  • PDF