• Title/Summary/Keyword: Chemical imaging

Search Result 364, Processing Time 0.029 seconds

Biodistribution and PET imaging of [18F]FMISO in mousecolon cancer xenografted mice

  • Seelam, Sudhakara Reddy;Lee, Ji Youn;Kim, Young Joo;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • Hypoxia is an important adverse prognostic factor for tumor progression and is a major cause of failure of radiation therapy. In case of short-term hypoxia, the metabolism can recover to normal, but if hypoxia persists, it causes irreversible cell damage and finally leads to death. So a hypoxia marker would be very useful in oncology. In particular, 2-nitroimidazole can be reduced to form a reactive chemical species, which can bind irreversibly to cell components in the absence of sufficient oxygen, thus, the development of radiolabeled nitroimidazole derivatives for the imaging of hypoxia remains an active field of research to improve cancer therapy result. 2-nitroimidazole based hypoxia marker, [$^{18}F$]FMISO holds promise for the evaluation of tumor hypoxia by Positron emission tomography (PET), at both global and local levels. In the present study, [$^{18}F$]FMISO was synthesized using an automatic synthesis module with high radiochemical purity (>99%) in 60 min. Immunohistochemical analysis using pimonidazole confirmed the presence of hypoxia in xenografted CT-26 tumor tissue. A biodistribution study in CT-26 xenografted mice showed that the increased tumor-to-muscle ratio and tumor-to-blood ratios from 10 to 120 min post-injection. In the PET study, [$^{18}F$]FMISO also showed increased tumor-to-muscle ratios from 10 to 120 min post-injection. In conclusion, this study demonstrates the feasibility and utility of [$^{18}F$]FMISO for imaging hypoxiain mouse colon cancer model using small animal PET.

Comparison of In-Phase and Opposed-Phase FMPSPGR Images in Breath-hold T1-weighted MR IMaging of Liver (호흡정지 T1 강조 간 자기공명영상에서 동위상 역위상 FMPSPGR 영상의 비교)

  • 김명진;김만득;정재준;이종태;유형식
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.142-147
    • /
    • 1997
  • Purpose: To compare the effectiveness of the in-phase (IP) sequence and the opposed-phase (Op) sequence in the detection of focal hepatic lesions in the single breath-hold hepatic MR imaging with fast gradient T1-weighted pulse sequences. Materials and Methods: IP and OP T1-weighted breath-hold imaging was performed using fast gradient echo sequences in 45 patients referred for known focal hepatic lesions, in which 78 lesions were detected. Three blind readers independently reviewed the images for lesion detectability. The signal-to-noise ratio (SNR) of the liver, the lesion-to-liver contrast-to-noise ratio (CNR) and the liver-to-spleen CNR were also compared. A consensus was reached by three readers to determine which sequence is better in image quality. Results: On OP images, 61(78%), 61(78%), and 63(89%) lesions were correctly identified for reader 1, 2 and 3, respectively. On IP images, 66(85%), 65(83%), and 65(93%) lesions were detected for each reader, respectively. When two image sets were combined, 71(91 %), 69(88 %), and 76(97%) lesions respectively were detected for each reader. In cases of hepatocellular carcinoma, liver-to-Iesion CNR was greater on the OP images(p (0.05), but in other lesions significant difference was not demonstrated. Liver-to-spleen CNR was higher on OP images(p ( 0.1), but the SNR of the liver was higher on the IP images. Conclusion: Use of both IP and OP imaging can be helpful to avoid erroneous missing of some focal hepatic lesions.

  • PDF

Synthesis of O-(3-[18F]Fluoropropyl)-L-tyrosine (L-[18F]FPT) and Its Biological Evaluation in 9L Tumor Bearing Rat

  • Moon, Byung-Seok;Kim, Sang-Wook;Lee, Tae-Sup;Ahn, Soon-Hyuk;Lee, Kyo-Chul;An, Gwang-Il;Yang, Seung-Dae;Chi, Dae-Yoon;Choi, Chang-Woon;Lim, Sang-Moo;Chun, Kwon-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.91-96
    • /
    • 2005
  • O-(3-[$^{18}$F]Fluoropropyl)-L-tyrosine (L-[$^{18}$F]FPT) was synthesized by nucleophilic radiofluorination followed by acidic hydrolysis of protective groups and evaluated with 9 L tumor bearing rat. L-[$^{18}$F]FPT is an homologue of O-(2-[$^{18}$F]fluoroethyl)-L-tyrosine (L-[$^{18}$F]FET) which recently is studied as a tracer for tumor imaging using positron emission tomography (PET). [$^{18}$F]FPT was directly prepared from the precursor of O-(3-ptoluenesulfonyloxypropyl)- N-(tert-butoxycarbonyl)-L-tyrosine methyl ester. FPT-PET image was obtained at 60 min in 9 L tumor bearing rats. The radiochemical yield of [$^{18}$F]FPT was 0-45% (decay corrected) and the radiochemical purity was more than 95% after HPLC purification. The total time elapsed for the synthesis of [$^{18}$F]FPT was 100 min from EOB (End-of-bombardment). A comparison of uptake studies between [$^{18}$F]FPT and [$^{18}$F]FET was performed. In biodistribution, [$^{18}$F]FPT showed similar pattern with [$^{18}$F]FET in various tissues, but [$^{18}$F]FPT showed low uptake in brain. Furthermore, [$^{18}$F]FPT showed higher tumor-to-brain ratio than [$^{18}$F]FET. In conclusion, [$^{18}$F]FPT seems to be more useful amino acid tracer than [$^{18}$F]FET for brain tumors imaging with PET.

Cutoff Values for Diagnosing Hepatic Steatosis Using Contemporary MRI-Proton Density Fat Fraction Measuring Methods

  • Sohee Park;Jae Hyun Kwon;So Yeon Kim;Ji Hun Kang;Jung Il Chung;Jong Keon Jang;Hye Young Jang;Ju Hyun Shim;Seung Soo Lee;Kyoung Won Kim;Gi-Won Song
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1260-1268
    • /
    • 2022
  • Objective: To propose standardized MRI-proton density fat fraction (PDFF) cutoff values for diagnosing hepatic steatosis, evaluated using contemporary PDFF measuring methods in a large population of healthy adults, using histologic fat fraction (HFF) as the reference standard. Materials and Methods: A retrospective search of electronic medical records between 2015 and 2018 identified 1063 adult donor candidates for liver transplantation who had undergone liver MRI and liver biopsy within a 7-day interval. Patients with a history of liver disease or significant alcohol consumption were excluded. Chemical shift imaging-based MRI (CS-MRI) PDFF and high-speed T2-corrected multi-echo MR spectroscopy (HISTO-MRS) PDFF data were obtained. By temporal splitting, the total population was divided into development and validation sets. Receiver operating characteristic (ROC) analysis was performed to evaluate the diagnostic performance of the MRI-PDFF method. Two cutoff values with sensitivity > 90% and specificity > 90% were selected to rule-out and rule-in, respectively, hepatic steatosis with reference to HFF ≥ 5% in the development set. The diagnostic performance was assessed using the validation set. Results: Of 921 final participants (624 male; mean age ± standard deviation, 31.5 ± 9.0 years), the development and validation sets comprised 497 and 424 patients, respectively. In the development set, the areas under the ROC curve for diagnosing hepatic steatosis were 0.920 for CS-MRI-PDFF and 0.915 for HISTO-MRS-PDFF. For ruling-out hepatic steatosis, the CS-MRI-PDFF cutoff was 2.3% (sensitivity, 92.4%; specificity, 63.0%) and the HISTO-MRI-PDFF cutoff was 2.6% (sensitivity, 88.8%; specificity, 70.1%). For ruling-in hepatic steatosis, the CS-MRI-PDFF cutoff was 3.5% (sensitivity, 73.5%; specificity, 88.6%) and the HISTO-MRI-PDFF cutoff was 4.0% (sensitivity, 74.7%; specificity, 90.6%). Conclusion: In a large population of healthy adults, our study suggests diagnostic thresholds for ruling-out and ruling-in hepatic steatosis defined as HFF ≥ 5% by contemporary PDFF measurement methods.

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

Controlled Synthesis of Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition

  • Han, Jaehyun;Lee, Jun-Young;Kwon, Heemin;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.630-630
    • /
    • 2013
  • Recently, atomically smooth hexagonal boron nitride(h-BN) known as a white graphene has drawn great attention since the discovery of graphene. h-BN is a III-V compound and has a honeycomb structure very similar to graphene with smaller lattice mismatch. Because of strong covalent sp2bonds like graphene, h-BN provides a high thermal conductivity and mechanical strength as well as chemical stability of h-BN superior to graphene. While graphene has a high electrical conductivity, h-BN has a highly dielectric property as an insulator with optical band gap up to 6eV. Similar to the graphene, h-BN can be applied to a variety of field, such as gate dielectric layers/substrate, ultraviolet emitter, transparent membrane, and protective coatings. However, up until recently, obtaining and controlling good quality monolayer h-BN layers have been too difficult and challenging. In this work, we investigate the controlled synthesis of h-BN layers according to the growth condition, time, temperature, and gas partial pressure. h-BN is obtained by using chemical vapor deposition on Cu foil with ammonia borane (BH3NH3) as a source for h-BN. Scanning Transmission Electron Microscopy (STEM, JEOL-JEM-ARM200F) is used for imaging and structural analysis of h-BN layer. Sample's surface morphology is characterized by Field emission scanning electron microscopy (SEM, JEOL JSM-7100F). h-BN is analyzed by Raman spectroscopy (HORIBA, ARAMIS) and its topographic variations by Atomic force microscopy (AFM, Park Systems XE-100).

  • PDF

Recent Progress in Multiplexed Detection of Biomarkers Based on Quantum Dots (양자점 기반 다중 바이오마커 검출법의 연구동향)

  • Kim, Yerin;Choi, Yu Rim;Kim, Bong-Geun;Na, Hyon Bin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.451-458
    • /
    • 2022
  • Semiconductor quantum dots (QDs) are optical probes with excellent fluorescence properties. Therefore, they have been applied to various bio-medical imaging techniques and biosensors. Due to the unique optical characteristics of wide absorption and narrow fluorescence energy bands, multiple types of signals can be generated by the combination of fluorescence wavelengths from different QDs, which enables the simultaneous detection of more than two biomarkers. In this review, the advantages and applications of QDs and QD nanobeads (QBs) in multiple biomarker assays were described, and new developments or improvements in multiplexed biomarker detection techniques were summarized. In particular, recent reports were summarized, focusing on the design strategies in immunoassay construction and signal transducing materials for fluorescence-linked immunosorbent assays using QDs and immunochromatographic assays using QBs. New detection platforms will be developed for early diagnosis of diseases and other fields if multiplexed detection technologies of excellent accuracy and sensitivity are combined with artificial intelligence algorithms.

Role of Chemical Exchange Saturation Transfer and Magnetization Transfer MRI in Detecting Metabolic and Structural Changes of Renal Fibrosis in an Animal Model at 3T

  • Anqin Li;Chuou Xu;Ping Liang;Yao Hu;Yaqi Shen;Daoyu Hu;Zhen Li;Ihab R. Kamel
    • Korean Journal of Radiology
    • /
    • v.21 no.5
    • /
    • pp.588-597
    • /
    • 2020
  • Objective: To investigate the value of combined chemical exchange saturation transfer (CEST) and conventional magnetization transfer imaging (MT) in detecting metabolic and structural changes of renal fibrosis in rats with unilateral ureteral obstruction (UUO) at 3T MRI. Materials and Methods: Thirty-five Sprague-Dawley rats underwent UUO surgery (n = 25) or sham surgery (n = 10). The obstructed and contralateral kidneys were evaluated on days 1, 3, 5, and 7 after surgery. After CEST and MT examinations, 18F-labeled fluoro-2-deoxyglucose positron emission tomography was performed to quantify glucose metabolism. Fibrosis was measured by histology and western blots. Correlations were compared between asymmetrical magnetization transfer ratio at 1.2 ppm (MTRasym(1.2ppm)) derived from CEST and maximum standard uptake value (SUVmax) and between magnetization transfer ratio (MTR) derived from MT and alpha-smooth muscle actin (α-SMA). Results: On days 3 and 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of contralateral kidneys (p < 0.05). On day 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of sham-operated kidneys (p < 0.05). The MTRasym(1.2ppm) of UUO renal medulla was fairly negatively correlated with SUVmax (r = -0.350, p = 0.021), whereas MTR of UUO renal medulla was strongly negatively correlated with α-SMA (r = -0.744, p < 0.001). Conclusion: CEST and MT could provide metabolic and structural information for comprehensive assessment of renal fibrosis in UUO rats in 3T MRI and may aid in clinical monitoring of renal fibrosis in patients with chronic kidney disease.

Imaging Neuroreceptors in the Living Human Brain

  • Wagner Jr Henry N.;Dannals Robert F.;Frost J. James;Wong Dean F.;Ravert Hayden T.;Wilson Alan A.;Links Jonathan M.;Burns H. Donald;Kuhar Michael J.;Snyder Solomon H.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.18 no.2
    • /
    • pp.17-23
    • /
    • 1984
  • For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human mind in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On May 25, 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine receptors than serotonin-2 receptors. Preliminary studies in patients with neuropsychiatric disorders suggests that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits quantitative assay of picomolar quantities of neuro-receptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. The growth of any scientific field is based on a paradigm or set of ideas that the community of scientists accepts. The unifying principle of nuclear medicine is the tracer principle applied to the study of human disease. Nineteen hundred and sixty-three was a landmark year in which technetium-99m and the Anger camera combined to move the field from its latent stage into a second stage characterized by exponential growth within the framework of the paradigm. The third stage, characterized by gradually declining growth, began in 1973. Faced with competing advances, such as computed tomography and ultrasonography, proponents and participants in the field of nuclear medicine began to search for greener pastures or to pursue narrow sub-specialties. Research became characterized by refinements of existing techniques. In 1983 nuclear medicine experienced what could be a profound change. A new paradigm was born when it was demonstrated that, despite their extremely low chemical concentrations, in the picomolar range, it was possible to image and quantify the distribution of receptors in the human body. Thus, nuclear medicine was able to move beyond physiology into biochemistry and pharmacology. Fundamental to the science of pharmacology is the concept that many drugs and endogenous substances, such as neurotransmitters, react with specific macromolecules that mediate their pharmacologic actions. Such receptors are usually identified in the study of excised tissues, cells or cell membranes, or in autoradiographic studies in animals. The first imaging and quantification of a neuroreceptor in a living human being was performed on May 25, 1983 and reported in the September 23, 1983 issue of SCIENCE. The study involved the development and use of carbon-11 N-methyl spiperone (NMSP), a drug with a high affinity for dopamine receptors. Since then, studies of dopamine and serotonin receptors have been carried out in over 100 normal persons or patients with various neuropsychiatric disorders. Exactly one year later, the first imaging of opitate receptors in a living human being was performed [1].

  • PDF

Imaging of Tumor Proliferation Using Iodine-131-Iodomethyluridine (Iodine-131-Iodomethyluridine을 이용한 종양세포증식의 영상화에 관한 실험적 연구)

  • Min Kyung-Yoon;Kim, Chang-Guhn;Kim, Hyun-Jeong;Lim, Hyung-Guhn;Rho, Ji-Young;Juhng Seon-Kwan;Won Jong-Jin;Yang, David J.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.344-350
    • /
    • 1996
  • Purpose : Noninvasive imaging of tumor cell proliferation could be helpful in the evaluation of tumor growth potential and could provide an early assessment of treatment response. Radiolabeled thymidine, uridine and adenosine have been used to evaluate tumor cell proliferation. These nucleoside analogs are incorporated into DNA during proliferation. Iodine-131-Iodomethyluridine, an analog of Iodine-131-Iododeoxyuridine, is also involved in DNA/RNA synthesis. The purpose of this study was to develop Iodine-131-Iodomethylurdine and image tumor proliferation using Iodine-131-Iodomethyluridine. Materials and Methods : Radiosynthesis of Iodine-131-5-Iodo-2'-O-methyluridine (Iodine-131-Iodomethyluridine) was prepared from 10 mg of 2'-O-methyluridine(Sigma chemical Co., St. Louis, Missouri) and 2.1 mCi(SP. 10Ci/mg) of Iodine-131-labeled sodium iodide in $100{\mu}l$ of water using iodogen reaction. Female Fischer 344 rats were inoculated in the thigh area with breast tumor cells(13765 NF, $10^5$ cells/rat S.C.). After 14 days, the Iodine-131-Iodomethyluridine $10{\mu}Ci$ was injected to three groups of rats(3/group). The percent of injected dose per gram of tissue weight was determined at 0.5-hours, 2-hours, 4-hours, and 24-hours respectively. Tumor bearing rats after receiving Iodine-131-Iodomethyluridine($50{\mu}Ci$ IV) were euthanized at 2 hours after injection. Autoradiography was done using freeze-dried $50{\mu}m$ coronal section. After injection of Iodine-131- Iodomethyluridine ($10{\mu}Ci$/rat, IV) in three breast tumor-bearing rats, planar scintigraphy was taken at 45 minutes, 90 minutes and 24 hours. Results : Iodine-131-Iodomethyluridine was conveniently synthesized using iodogen reaction. The biodistribution showed fast blood clearance and the tumor-to-tissue uptake ratios showed that optimal imaging time was at 2 hours postinjection. Autoradiogram and planar scintigram indicated that tumor could be well visualized. Conclusion : The findings suggest that Iodine-131-Iodomethyluridine, a new radio-iodinated nucleoside, has potential use for evaluation of active regions of tumor growth.

  • PDF