• Title/Summary/Keyword: Chemical disaster

Search Result 312, Processing Time 0.032 seconds

Soil Physical-chemical Characteristics on Indigenous Plant and Naturalized Plant of Coastal Sand Dune on Central-western Coastal Area, Korea (중부 서해안 해안사구 자생식물과 귀화식물 군락의 토양특성 비교)

  • Kim, Chan-Beom;Son, Yowhan;Bae, Yeong-Tae;Park, Ki-Hyung;Youn, Ho-Joong;Kim, Kyongha;Lee, Chang-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.323-330
    • /
    • 2013
  • This study was conducted to know the effect of major physical-chemical characteristics of soil to be in the area of indigenous and naturalized plant in the sand dune of the western coastal area of Korea. The study was performed on the sand dunes distributed across Taean-gun and Buan-gun and the study period was from April to October in 2010. Sixty nine of $5m{\times}5m$ study plots were installed and the distribution of plants were investigated. We measured the soil characteristics including soil pH, organic matter, total nitrogen, available $P_2O_5$, soil cation exchange capacity, exchangeable cation, EC and NaCl. As a result, soil texture was classified as sand, in case of average pH, NaCl, and EC of soil to be in the area of indigenous herbaceous plant were 7.77, 0.03% and $0.52ds.m^{-1}$, indigenous woody plant of the mean pH, NaCl and EC were 7.31, 0.01%, $0.23ds.m^{-1}$. In case of naturalized herbaceous plant of the mean soil pH, NaCl and EC were 7.12, 0.01%, $0.29ds.m^{-1}$, naturalized woody plant of the mean soil pH, NaCl and EC were 7.34, 0.01%, $0.20ds.m^{-1}$ respectively. On average, naturalize plants showed in low salinity concentration than indigenous plants.

Solidification of Heavy Metal Ions Using Magnesia-phosphate Cement (인산염 마그네시아 시멘트에 의한 중금속 이온 고정화)

  • Choi, Hun;Kang, Hyun-Ju;Song, Myung-Shin;Jung, Eui-Dam;Kim, Ju-Seng
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • Since 1980's, many mines have been closed and abandoned due to the exhaustion of deposits and declining prices of international mineral resources. Because of the lack of post management for these abandoned mines, Farm land and rivers were contaminated with heavy metal ions and sludge. We studied on the solidification/stabilization of heavy metal ions, chromium ions and lead ions, using magnesia-phosphate cement. Magnesia binders were used calcined-magnesia and dead-burned magnesia. Test specimens were prepared by mixing magnesia binder with chromium ions and lead ions and activators. We analyzed the hydrates by reaction between magnesiaphosphate cement and each heavy metal ions by XRD and SEM-EDAX, and analyzed the content of heavy metal ions in the eruption water from the specimens for the solidification and stabilization of heavy metal ions by ICP. The results was shown that calcined magnesia binder is effective in stabilization for chromium ions and dead-burned magnesia binder is effective in stabilization for lead ions.

A Study on Risk Assessment and Risk Mitigation Measures of Liquefied Chlorine Leak (액화염소 누출의 위험도 분석 및 위험경감조치에 대한 연구)

  • Lee, Ju-Youn;Chon, Young-Woo;Hwang, Yong-Woo;Lee, Ik-Mo
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • As the chemical industry becomes more advanced, the awareness of chemical accidents is rising, and legal systems for chemical safety management are strengthened. In this study, quantitative risk assessment of liquid chlorine leak was conducted. Risk assessment was performed in the order of frequency analysis, consequence analysis, and risk calculation. The individual risk was presented in the form of contour lines. The social risk was expressed by the FN curve. The risk of day and night was in an unacceptable area, so it was required to mitigate risk. Therefore in-building, which could trap the pool, was selected as a risk mitigation measure. As a result of the cost benefit analysis, it was concluded that this measure should be reasonably implemented.

Improved Photo Degradation of Rhodamine B Dye using Iron Oxide/Carbon Nanocomposite by Photo-Fenton Reaction

  • Kim, Min-Il;Im, Ji-Sun;In, Se-Jin;Kim, Hyuk;Kim, Jong-Gyu;Lee, Young-Seak
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.195-199
    • /
    • 2008
  • A nanocomposite consisting of $Fe_3O_4$ and MWCNT was produced via sol-gel technique using $FeCl_3$ along with MWCNT by calcination at $300^{\circ}C$. The degradation effect of rhodamine B dye has been investigated under UV illumination in a darkroom. The degradation reaction was studied by monitoring the discoloration of dye as a function of irradiation time using UV-visible spectrophotometeric technique. The $Fe_3O_4$-MWCNT samples have continuous degradation ability under the UV illumination with the first order kinetics and the dye removal was better than in the pristine $Fe_3O_4$. The resultant composite catalyst was found to be efficient for the photo-Fenton reaction of the dye.

Improvement of Thermal Stability of Electrospun PAN Fibers by Various Additives

  • Lee, Young-Seak;Kim, Min-Il;Im, Ji-Sun;In, Se-Jin
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.200-202
    • /
    • 2008
  • In order to improve the thermal stability of PAN-based electrospun fibers, AP-PER-MEL and $TiO_2$ were added in to the fibers as additives. The polymer composite with uniformly mixed additional agents was obtained. In case of non-treated sample, the fibers were burn off completely with high rate within $620^{\circ}C$. But in case of treated samples (EF-M and EF-MT), it is sure that the thermal stability was improved by studying TGA data and ISO flammability test about 20 and 30%, respectively. A synergy effect of adding two kinds of agents (AP-PER-MEL and $TiO_2$) into PAN-based electrospun fibers was confirmed. Through SEM images, it is confirmed that the fiber shape can be kept even after addition of agents (AP-PER-MEL and $TiO_2$). Finally the thermal stability of fibers was largely developed with keeping the nature of PAN-based fibers effectively.

Statistical Analysis of Domestic Laboratory Accidents using Classification Criteria of KCD 7 and OIICS (KCD 7과 OIICS의 분류기준을 활용한 국내 연구실 사고의 통계적 분석)

  • Na, Ye Ji;Jang, Nam-Gwon;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.42-49
    • /
    • 2019
  • This study statistically analyzed the laboratory accidents by investigating 806 laboratory accident survey reports which were officially submitted to government from 2013 to June 2017. After comparing domestic and foreign accident classification criteria, the laboratory accidents were classified using KCD7(Korean Standard Classification of Diseases) and OIICS(Occupational Injury and Illness Classification System) criteria. For the type and part of injury, KCD7 classification criteria was adopted. And, for the cause and occurrence type of accidents, OIICS was adopted to analyze the laboratory accidents. Most of injuries happened to the wrist and hand caused by sharp materials or chemical materials. The analysis of accident cause showed that accidents resulted in medical practice and accidents from handtools and chemical materials such as acid and alkali frequently occurred. The major occurrence types of laboratory accidents was body exposure to the chemical materials such as hydrochloric acid and sulfuric acid. In addition, the accidents resulted in destroy of grasped object or falling object were frequently reported.

A Study on the Activity and Training Plan of a Field Crew for the Design of Training Scenarios Assuming Chemical Accidents and Terrorism (화학사고·테러를 가정한 훈련 시나리오 설계를 위한 현장 대원의 활동성 분석과 훈련방안에 관한 연구)

  • Kim, Si-Kuk;Choi, Su-Gil;Hong, Sung-chul
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.72-85
    • /
    • 2020
  • This article is a study on the activity of rescue workers for designing simulation training scenarios assuming chemical accidents. On the basis of the complexity of the indoor scene in the case of chemical accidents and terrorism, we designed a 12-step simulation training scenario for two teams to analyze the improvement in firefighters' capabilities. On the basis of activity measurement in the simulation scenario, step 2 of training had the most drops in the maximum heart rate, as follow: N1, from 163 bpm to 153 bpm; N2, from 186 bpm to 151 bpm; N3, from 168 bpm to 162 bpm; and N4, from 166 bpm to 152 bpm. In terms of intensity level in the allowable activity time, it was found that in step 2 both N1 and N2 reduced from Level 5 to Level 3, N3 remained at Level 4, N4 reduced from Level 4 to Level 3, and the maximum allowable activity time increased.

A Study on the improvement for response manual of chemical terror incident using the service design analysis (서비스디자인 접근법을 활용한 화학테러현장 대응매뉴얼의 개선방안 연구)

  • Ham, Seung Hee;Park, Namkwun;Lee, Jun
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.325-333
    • /
    • 2018
  • Purpose: There have been terrorist attacks all over the world, causing massive damage. In Korea, there are few cases of terrorist damage, but the lack of the on-site response experience lead to constraints on the opportunity to verify capabilities against terrorism. Therefore, in this study, the chemical terrorism on-site countermeasures is considered as a concept of service, it was possible to draw up improvement alternatives for each element by reviewing at once the interactions between the concerned organizations and citizens in the field and the utilization of the equipment and facilities in the invisible area. Results: It had been evaluated the service process of the counterpart manager from the viewpoint of the victim citizen, who is the beneficiary of the final security service. It has found out the waiting point(W.P) between the victim's civilian incident management, and the element of failure(F.P). Conclusion: In this way, comparing chemical terror incident response manuals belonged to each related organization by fusion of service design approach and scenario technique, It is expected that it will be able to find out more specific problems and to find improvement alternatives.

A Study on Health Impact Assessment and Emissions Reduction System Using AERMOD (AERMOD를 활용한 건강위해성평가 및 배출저감제도에 관한 연구)

  • Seong-Su Park;Duk-Han Kim;Hong-Kwan Kim;Young-Woo Chon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.93-105
    • /
    • 2024
  • Purpose: This study aims to quantitatively determine the impact on nearby risidents by selecting the amount of chemicals emitted from the workplace among the substances subject to the chemical emission plan and predicting the concentration with the atmospheric diffusion program. Method: The selection of research materials considered half-life, toxicity, and the presence or absence of available monitoring station data. The areas discharged from the materials to be studied were selected as the areas to be studied, and four areas with floating populations were selected to evaluate health risks. Result: AERMOD was executed after conducting terrain and meteorological processing to obtain predicted concentrations. The health hazard assessment results indicated that only dichloromethane exceeded the threshold for children, while tetrachloroethylene and chloroform appeared at levels that cannot be ignored for both children and adults. Conclusion: Currently, in the domestic context, health hazard assessments are conducted based on the regulations outlined in the "Environmental Health Act" where if the hazard index exceeds a certain threshold, it is considered to pose a health risk. The anticipated expansion of the list of substances subject to the chemical discharge plan to 415 types by 2030 suggests the need for efficient management within workplaces. In instances where the hazard index surpasses the threshold in health hazard assessments, it is judged that effective chemical management can be achieved by prioritizing based on considerations of background concentration and predicted concentration through atmospheric dispersion modeling.

A Study on Harmonized Classification and Categorization for Physical Hazards of Chemicals in Korea (국내 화학물질의 물리적위험성 분류·구분 단일화에 관한 연구)

  • Lee, BongWoo;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.30-41
    • /
    • 2017
  • Although chemical substances have greatly contributed to prosperous human life and industrial development and made a great contribution to humanity, some dangerous substances are harmful to health and the environment. Thus, so long ago developed countries have also established strict safety standards. Korea is growing into a major chemical market, accounting for 3.4% of the global chemical market. The domestic laws related to chemical substances are similar to foreign countries, but there are many differences in detail, posing a lot of risks to safety, health and the environment as well as causing many problems in industry. In order to improve these problems, this study carried out to unify the domestic chemical law and the international standardization system (GHS) and to solve the trade barriers in the export and import by industry. In addition, researchers proposed a unified approach to classification and division of physical hazards, as advanced as developed nations, as a basis for prevention and response to accidents in dangerous goods.