• Title/Summary/Keyword: Chemical composition of glass

Search Result 200, Processing Time 0.031 seconds

Effect of Glass Composition on the Optical Properties of Color Conversion Glasses for White LED (유리조성에 따른 백색 LED용 색변환 유리의 광특성)

  • Huh, Cheolmin;Hwang, Jonghee;Lim, Tae-Young;Kim, Jin-Ho;Lee, MiJai;Yoo, Jong-Sung;Park, Tae-Ho;Moon, Jooho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.669-674
    • /
    • 2012
  • Yellow phosphor dispersed color conversion glasses are promising phosphor materials for white LED applications because of their good thermal durability, chemical stability, and anti-ultraviolet property. Six color conversion glasses were prepared with high Tg and low Tg specimens of glass. Luminous efficacy, luminance, CIE (Commission Internationale de l'Eclairage) chromaticity, CCT (Correlated Color Temperature), and CRI (Color Rendering Index) of the color conversion glasses were analyzed according to the PL spectrum. Color conversion glasses with high Tg glass frit, sintered at higher temperature, showed better luminous properties than did color conversion glasses with low Tg glass frit. The characteristics of the color conversion glass depended on the glass composition rather than on the sintering temperature. The XRD peaks of the YAG phosphor disappeared in the color conversion glass with major components of $B_2O_3$-ZnO-$SiO_2$-CaO and, in the XRD results, new crystalline peaks of $BaSi_2O_5$ appeared in the color conversion glass with major components of $Bi_2O_3$-ZnO-$B_2O_3$-MgO. The characteristics of CIE chromaticity, CCT, and the CRI of low Tg color conversion glasses showed worse color properties than those of high Tg color conversion glasses. However, these color characteristics of low Tg glasses were improved by thickness variation. So color conversion glasses with good characteristics of both luminous and color properties were attained.

Material Properties of GeSbSe Chalcogenide Glass and Fabrication Process for 8~12 ㎛ IR Region Aspherical Optical Lens (GeSbSe계 기반 8~12 ㎛ 파장대역 적외선 광학 렌즈 제작 및 비구면 렌즈 가공기술 개발)

  • Bae, Dong-Sik;Yeo, Jong-Bin;Han, Sang-Hyun;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • The chalcogenide glass has superior optical properties in IR region transmittances. We have determined the composition of GeSbSe chalcogenide glass for the application of good IR lenses, resulting in the composite rate of $Ge_{19}Sb_{23}Se_{58}$. The optical, structural, thermal and physical properties were measured by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), X-ray computed tomography (X-ray CT) respectively. The fabrication of the chalcogenide glass lens for infrared optics applications was proposed using a diamond turning machining technology which is known as the suitable ways for the production cost reduction and the accurate fabrication process control.

Additional Study on the Laser Sealing of Dye-Sensitized Solar-Cell-Panels Using V2O5 and TeO2 Containing Glass

  • Cho, Sung-Jin;Lee, Kyoungho
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.103-107
    • /
    • 2015
  • The effective glass frit composition used to absorb laser energy and to seal commercial dye-sensitized solar cell panel substrates has been previously developed using $V_2O_5-TeO_2$-based glass with 10 wt% ${\beta}$-eucryptite as a CTE controlling filler. The optimum sealing conditions are provided using a 3 mm beam, a laser power of 40 watt, a scan speed of 300 mm/s, and 200 irradiation cycles. In this study, the feasibility of the developed glass frit is investigated in terms of the sealing strength and chemical durability against the commercial iodide/triiodide electrolyte solution and fluorine-doped tin oxide (FTO) electrode in order to increase the solar cell lifetime. The sealing strength of the laser-sealed $V_2O_5-TeO_2$-based glass frit is $20.5{\pm}1.7MPa$, which is higher than those of thermally sealed glass frit and other reported glass frit. Furthermore, the developed glass frit is chemically stable against electrolyte solutions. The glass frit constituents are not leached out from the glass after soaking in the electrolyte solution for up to three months. During the laser sealing, the glass frit does not react with the FTO electrode; thus, the resistivity of the FTO electrode beneath the laser-sealed area remains the same.

A Study on the Physical Properties of Slag-based Glass-Ceramics (Slag를 위주로 한 Glass-Ceramics 의 물리적 성질에 관한 연구)

  • 장승현;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.1
    • /
    • pp.27-34
    • /
    • 1980
  • The synthesis of glass-ceramic materials from glasses based on industrial wastes or natural rocks their physical properties were studied. Glasses of composition, CaO14.7∼16.1, MgO7.4∼9.0, Al2O38.3∼19.3, SiO2 48.9∼51.0wt% were prepared from domestic blast furnace slag, serpentine, sea sand and etc. with additions of chromic oxide, and fluoride as nucleating agent. The glasses were subjected to controlled heat treatments and yielded fine microstructure of glass-ceramics which were composed of monocrystalline phase of aluminous diopside. X-ray diffraction techniques were adopted to identify the crystalline phases and to determine the degree of crystallization quantitatively. Density, coefficient of thermal expansion, young's modulus, microhardness and modulus of rupture were measured and the resulting properties were discussed in terms of the heat-treatment conditions, the degree of crystallization, species of crystaline phase, the microstructures formed in glass-cramics and the chemical compositions of mother glasses.

  • PDF

The Properties of Concrete containing Waste-glass Powder (혼화재로서 폐유리 미분말을 사용한 콘크리트의 특성 평가)

  • Choi, Sung-Woo;Ryu, Deug-Hyun;Kim, Jun-Hyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.222-223
    • /
    • 2017
  • In the automotive industry, such as scrap metal and plastic scrap process is being recycled. Although the glass beads are used as road paving or other additives and processing crushing, recycling is known that there are limits. The utilization of waste glass was evaluated as a concrete admixture by using powder characteristics and chemical composition of the glass. As a result of using waste-glass powder as an admixture, it is difficult to expect the pozzolanic effect, but it is found that it can increase the fluidity of concrete and ensure the durability performance in the appropriate amount range.

  • PDF

Preparation of bioactive materials by crystallization sintering (결정화 소결에 의한 생체활성재료의 제조)

  • 명중재;이안배;정용선;신건철;김호건
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.169-178
    • /
    • 1998
  • The crystal phases precipitated in various compositions glass of CaO-$SiO_2-P_2O_5$ system, were identified by XRD. E composition (CaO 49.4, $SiO_2\;36.8,\;P_2O_5$ 8.8 wt%) glass in which both apatite(($Ca_{10}(PO_4)_6O$ and $\beta$-wollastonite($CaSiO_3$) crystals would precipitate by heating, was selected as an experimental composition to prepare the glass ceramics with high bending strength and good bioactivity to the living bone. Glass powders of E composition were unidirectionally crystallized at $1050^{\circ}$C in the temperature-gadient furnace and the resultant glass ceramics were characterized. Bending strength of the glass ceramics was also measured. To investigate the bond forming ability between the glass ceramics and living bone tissue, soaking test of glass ceramics in simulated body fluid was carried out. Densed glass ceramics composed of apatite and $\beta$-wollastonite crystal were prepared by unidirectional crystallization under the optimum conditions. (2 0 2) plane of $\beta$-wollastonite crystals tended to grow perpendicularly to the crystallization direction. Average bending strength of this glass ceramics was 186.9 MPa, higher than that of the glass ceramics prepared by isothermal (not directional) crystallization In soaking test, a thin layer of apatite crystallite was formed on surface of the glass ceramics in 3 days. Apatite crystals formed on the glass ceramics could be act a role to make the chemical bond between the glass ceramics and living bone tissue.

  • PDF

Gasification of Surface Carbon Contaminant during Discharge in Plasma Display Panel (PDP)

  • Soh, Hyun;Cho, Sung-Ho;Kim, Young-Chai
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.795-798
    • /
    • 2003
  • Inside of working PDP, there exist highly reactive conditions in the gap between two glass panels. MgO layer and phosphor have been investigated as a function of discharge and temperature. A drastic reduction in carbon impurity was observed on the surfaces after discharging and heat treatment. Carbon composition on the MgO and phosphor is a dominant factor for their instability

  • PDF

Preparation and Performance of Aluminosilicate Fibrous Porous Ceramics Via Vacuum Suction Filtration

  • Qingqing Wang;Shaofeng Zhu;Zhenfan Chen;Tong Zhang
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.12-20
    • /
    • 2024
  • This study successfully prepared high-porosity aluminosilicate fibrous porous ceramics through vacuum suction filtration using aluminosilicate fiber as the primary raw material and glass powder as binder, with the appropriate incorporation of glass fiber. The effects of the composition of raw materials and sintering process on the structure and properties of the material were studied. The results show that when the content of glass powder reached 20 wt% and the samples were sintered at the temperature of 1,000 ℃, strong bonds were formed between the binder phase and fibers, resulting in a compressive strength of 0.63 MPa. When the sintering temperatures were increased from 1,000 ℃ to 1,200, the open porosity of the samples decreased from 89.08 % to 82.38 %, while the linear shrinkage increased from 1.13 % to 10.17 %. Meanwhile, during the sintering process, a large amount of cristobalite and mullite were precipitated from the aluminosilicate fibers, which reduced the performance of the aluminosilicate fibers and hindered the comprehensive improvement in sample performance. Based on these conditions, after adding 30 wt% glass fiber and being sintered at 1,000 ℃, the sample exhibited higher compressive strength (1.34 MPa), higher open porosity (89.13 %), and lower linear shrinkage (5.26 %). The aluminosilicate fibrous porous ceramic samples exhibited excellent permeability performance due to their high porosity and interconnected three-dimensional pore structures. When the samples were filtered at a flow rate of 150 mL/min, the measured pressure drop and permeability were 0.56 KPa and 0.77 × 10-6 m2 respectively.

Characteristics of Vitrification Process and Vitrified Form for Radioactive Waste (방사성폐기물 유리화 공정 및 유리고화체 특성)

  • Kim, Cheon-Woo;Kim, Ji-Yean;ChoI, Jong-Rak;Ji, Pyung-Kook;Park, Jong-Kil;Shin, Sang-Woon;Ha, Jong-Hyun;Song, Myung-Jae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.175-180
    • /
    • 2004
  • In order to vitrify the combustible dry active waste (DAW) generated from Korean Nuclear Power Plants, a glass formulation development based on waste composition was performed. A borosilicate glass, DG-2, was formulated to vitrify the DAW in an induction cold crucible melter (CCM). The processability, product performance, and volume reduction effect of the candidate glass were evaluated using a computer code and were measured experimentally in the laboratory and CCM. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. Start-up and maintaining glass melt of the candidate glass were favorable in the CCM. The product of the glass product such as chemical durability, phase stability, and density was satisfactory. The vitrification process using the candidate glass was also evaluated assuming that it was operated as economically as possible.

  • PDF

Preparation and Performance Improvement of Polylactic acid based composites by stereocomplex (스테레오 컴플렉스를 이용한 폴리유산 복합재 제조 및 성능 개선)

  • Hong, Chae-Hwan;Kim, Yeon-Hee;Park, Jun-Seo;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1671-1676
    • /
    • 2015
  • A unique crystallization behavior of poly(L-lactide)(PLLA)/poly(D-lactide)(PDLA) stereocomplex(SC) was observed when a PLLA/PDLA blend was subjected to the specific melting conditions. Therefore, we tried to blend PLLA and PDLA at overall composition to form PLA stereocomplexes. Moreover, impact modifier and reinforcement materials such as talc and glass fiber added to enhance the mechanical and thermal properties such as impact strength and heat distortion temperature(HDT). As a result, we got one representative result, one composite recipe with HDT $115^{\circ}C$. For more economic technology, we tried to blend PLLA and Polypropylene at overall composition and we got another representative result which could be applied to current PP/talc composites and ABS materials. The core technology of this might be the well dispersion of glass fibers into the matrix resin such as PP, PLLA and impact strength modifier.