• Title/Summary/Keyword: Chemical composition of Korean traditional ceramics

Search Result 6, Processing Time 0.019 seconds

A Study of the Chemical Composition of Korean Traditional Ceramics (I): Celadon and Kory$\v{o}$ Whiteware (한국 전통 도자기의 화학 조성에 대한 연구 (I): 고려청자와 고려백자)

  • Koh, Kyong-Shin Carolyn;Choo, Woong-Kil;Ahn, Sang-Doo;Lee, Young-Eun;Kim, Gyu-Ho;Lee, Yeon-Sook
    • Journal of Conservation Science
    • /
    • v.26 no.3
    • /
    • pp.213-228
    • /
    • 2010
  • The composition of Chinese ceramic shards has been the subject of analysis in Europe, beginning in the 18th century, and in China from the 1950s. Scientific studies of traditional Korean shards commenced in the United States and Germany in the 1980s, and studies within Korea began in the 1990s. From analysis of a large systematically collected dataset, the composition of porcelain produced during the Kory. dynasty, including 21 celadon and 10 whiteware groups, was characterized and compared with that of Chinese ceramics. The average composition of the body and glaze of several shards (usually three to five) from each group was determined, enabling comparisons between groups. The results show that the majority of groups were derived from mica-quartz porcelain stone, which was commonly used in Yuezhou, Jingdezhen, and other southern Chinese kilns. The composition of glazes includes clay and flux components; the latter were typically wood ash and limestone, initially as burnt but later as crushed forms. The earliest of the Kangjin glazes contained substantially less titanium oxide than did the Yuezhou glazes, which were typically formulated from body material and wood ash. The present study provides a comparative framework for the growing number of analytical investigations associated with excavations occurring in Korea.

An Archaeochemical Microstructural Study on Koryo Inlaid Celadon

  • Ham, Seung-Wook;Shim, Il-wun;Lee, Young-Eun;Kang, Ji-Yoon;Koh, Kyong-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1531-1540
    • /
    • 2002
  • With the invention of the inlaying technique for celadon in the latter half of the 12th century, the Koryo potters reached a new height of artistic and scientific achievement in ceramics chemical technology. Inlaid celadon shards, collected in 1991 during the surface investigation of Kangjin kilns found on the southwestern shore of South Korea, were imbedded in epoxy resin and polished for cross-section examination. Backscattered electron images were taken with an electron microprobe equipped with an energy dispersive spectrometer. The spectrometer was also used to determine the composition of micro-areas. Porcelain stone, weathered rock of quartz, mica, and feldspar composition were found to be the raw material for the body and important components in the glaze and white inlay. The close similarity between glaze and black inlay in the microstructure suggests that the glaze material was modified by adding clay with high iron content, such as biotite, for use as black inlay. The deep soft translucent quality of celadon glaze is brought about by its microstructure of bubbles, remnant and devitrified minerals, and the schlieren effect.

A Quarter Century of Scientific Study on Korean Traditional Ceramics Culture: From Mounds of Waste Shards to Masterpieces of Bisaek Celadon

  • Choo, Carolyn Kyongshin Koh
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • The first twenty-five years of scientific study within Korea on Korean traditional ceramics has been characterized as a bridging effort to understand the rich field of artistic ceramic masterpieces on one hand with analytic results gained from mounds of broken shards and kiln wastes on the other. First shard pieces were collected directly from the waste mounds, but most of the analyzed shards were provided by art historians and museum staffs directly involved in systematic excavations. The scientific study is viewed as one of many complimentary ways in learning about the multi-faceted ceramics culture, ultimately connecting human spirits and endeavors from the past to the present to the future. About 1350 pieces of analyzed shards have been so far collected and organized according to the production location and time period. From the experimental results of the analysis, the compositional and microstructural characteristics of bodies and glazes have been deduced for many kiln sites of Goryeo and Joseon dynasties. Except for a few local kilns, porcelain stone was used as body material in both dynasties. The principle of mixing a clay component with a flux material was used in Korean glazes as was in China. The clay component different from body clay was often used early on. In Gangjin a porcelain material appropriate for whiteware body was mixed for celadon glaze, and in Joseon Gwangju kilns glaze stone was chief clay material. The use of wood ash persisted in Korea even in making buncheong glazes, but in Joseon whitewares burnt lime and eventually crushed lime were used as flux material.

Study of the Chemical Composition of Korean Traditional Ceramics (II): Chos$\breve{o}$n Whiteware (한국 전통 도자기의 화학 조성에 대한 연구 (II): 조선백자)

  • KohChoo, Carolyn Kyong-Shin;Choo, Woong-Kil;Ahn, Sang-Doo;Lee, Young-Eun;Kim, Gyu-Ho;Lee, Yeon-Sook
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.61-74
    • /
    • 2011
  • The material characteristics of Chos$\breve{o}$n whiteware were investigated by analyzing and comparing the body and glaze compositions of whiteware shards excavated at the Kwangju royal kilns, Ch'unghyodong, and four other local-level kilns. In Korea, the rise of whiteware technology began in the early years of the Chos$\breve{o}$n dynasty, when the indigenous tradition of Kory$\breve{o}$ celadon was strongly influenced by the whiteware aesthetics of the Chinese Ming dynasty. The Kwangju royal kilns eventually made hard-textured whiteware of a quality equivalent to that of the Chinese by using type of porcelain stone that contained slightly less $Fe_2O_3$ and $TiO_2$ and slightly more $K_2O$ than that used for celadon. In contrast, the potters of Ch'unghyodong achieved the same level of quality by finding and using a totally different material: kaolinitic clay. The porcelain stone used at the Kwangju kiln was commonly found in Korea and south China, whereas kaolinitic clay (which has a high aluminum content) was typically found in north China, and was only rarely used in Korea. The flux component of the glaze compositions was mostly limestone, first in burnt form and later in crushed form, and the clay component was often glaze stone, which was a finer-grained porcelain stone with a higher proportion of feldspar. In the future, this comparative analytical study of Korean whiteware components should be extended to the $18^{th}$- and $19^{th}$-century kilns that are currently being excavated at a rapid pace.

A Study of the Chemical Composition of Korean Traditional Ceramics (III): Comparison of Punch'$\breve{o}$ng with Kory$\breve{o}$ Ware and Chos$\breve{o}$n Whiteware (한국 전통 도자기의 화학 조성에 대한 연구 (III): 분청에 대한 고려자기와 조선백자와의 비교)

  • KohChoo, Carolyn Kyong-Shin;Choo, Woong-Kil;Ahn, Sang-Doo;Lee, Young-Eun;Kim, Gyu-Ho;Lee, Yeon-Sook
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.75-90
    • /
    • 2011
  • At the beginning of the Chos$\breve{o}$n dynasty, punch'$\breve{o}$ng began as a simplified form of inlaid celadon, and in the two following centuries it developed into a popular folk craft in various styles and expressive decorations; overtime, it was increasingly made to resemble whiteware, and its production stopped after the Japanese invasion of Korea. In the present study, the body and glaze compositions of punch'$\breve{o}$ng were examined and compared with those of celadon and whiteware, whose compositions have previously been compared with those of Chinese ceramics. Here, the analyzed shards were organized into 28 groups based on their production sites and archaeological characteristics. For each group, the body and glaze compositions of several shards(usually three to five) were obtained, averaged, and compared with those of the other groups. These comparisons showed that the majority of the punch'$\breve{o}$ng bodies were formed, like those of celadon and whiteware, with mica-quartz porcelain stone, which was commonly used in Yuezhou, Jingdezhen, and other southern Chinese kilns. The glazes consisted of clay materials and flux components made from various proportions of wood ash, burnt limestone (glaze ash) and crushed limestone. Overall, the punch'$\breve{o}$ng glazes resembled the Kory$\breve{o}$ celadon and Kory$\breve{o}$ whiteware glazes more closely than the Chos$\breve{o}$n white wareglazes. However, the $TiO_2$ levels found in the tested punch'$\breve{o}$ng were low, similar to those of Chos$\breve{o}$n whiteware; this indicated that glaze stone was used as the clay component of the punch'$\breve{o}$ng glazes, as was the case for Chos$\breve{o}$n whiteware. This study of the material characteristics of punch'$\breve{o}$ng may be used as a comparative framework for analyzing ceramic shards discovered at current and future excavations within Korea.

Order-disorder structural tailoring and its effects on the chemical stability of (Gd, Nd)2(Zr, Ce)2O7 pyrochlore ceramic for nuclear waste forms

  • Wang, Yan;Wang, Jin;Zhang, Xue;Li, Nan;Wang, Junxia;Liang, Xiaofeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2427-2434
    • /
    • 2022
  • Series of unequal quantity Nd/Ce co-doped ceramic nuclear waste forms, (Gd, Nd)2(Zr, Ce)2O7, were prepared to tailor its ordered pyrochlore or disordered fluorite structure. The phase transition, microtopography, and elemental composition of the ceramic samples were systematically investigated, especially the effect of order-disorder structure on the chemical stability. It was confirmed that unequal quantity of Nd/Ce could synchronously replace the Gd/Zr-sites of Gd2Zr2O7. And the phase transition of order-disorder structure could be successfully tailored by regulating the average cationic radius ratio of (Gd, Nd)2(Zr, Ce)2O7 series. The elements of Gd, Nd, Zr, and Ce are uniformly distributed in the ordered or disordered structures. The MCC-1 leaching results showed that (Gd, Nd)2(Zr, Ce)2O7 pyrochlore ceramic nuclear waste forms had excellent chemical stability, whose elements' normalized leaching rates were as low as 10-4-10-7 g·m-2·d-1 after 7 days. In particular, the chemical stability of disordered structure was superior to that of ordered structure. It was proposed that the force constant and the closest packing were changed with the structure transformation resulting the chemical stability difference.