• Title/Summary/Keyword: Chemical characteristics

Search Result 10,392, Processing Time 0.044 seconds

Suspensions and polymers - Common links in rheology

  • Harrison, G.;Franks, G.V.;Tirtaatmadja, V.;Boger, D.V.
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.197-218
    • /
    • 1999
  • Rheological techniques are frequently used to characterize particulate suspensions and polymer systems. Experimental data frequently show that similar trends and characteristics are found in both systems. Using common examples and illustrations of the rheological behaviour, we attempt to bring together these separate fields and investigate the common links in the different systems. In many cases the similar rheological behaviour observed in these different systems can be related to the same basic physical principles.

  • PDF

A DNS Study of RCCI Combustion - Chemical Aspects (RCCI 연소의 직접수치모사 연구 - 화학적 측면)

  • Luong, Minh Bau;Yu, Gwang Hyeon;Yoo, Chun Sang
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.177-180
    • /
    • 2015
  • The chemical aspects of primary reference fuel (PRF)/air mixture under RCCI conditions are investigated to provide fundamental insights into the ignition characteristics of RCCI combustion. Chemical explosive mode analysis (CEMA) is adopted to understand the ignition process of the lean PRF/air mixture by identifying controlling species and elementary reactions at different locations and times.

  • PDF

Estimating for Properties of Insulating Degradation for Cellulose paper with Aging Temperature and Correlation by Statistical Treatment (셀룰로오스 절연지의 열화온도에 따른 절연특성 및 통계처리에 의한 상관관계 규명)

  • Kim, Jae-Hoon;Kim, Dae-Sik;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.912-917
    • /
    • 2010
  • It was known that oil-filled transformer's life depended on insulating paper which was applied to transformers for insulating of transformer. Therefore when paper was aged, its electrical, mechanical and chemical characteristics were changed. Especially if operating temperature was high, paper was quickly damaged. As cellulose paper which was mainly used for solid insulation of transformers was degraded, the cellulose polymer chains broke down into shorter lengths and gases such as CO, $CO_2$, $CH_4$, $C_2H_4$ and so on were produced from paper. Also by-product known as furan compounds were producted from paper and it were dissolved within insulating oil. In this paper accelerating aging cell was aged during 60 hours at 100, 150, 180 and $200^{\circ}C$, respectively, so evaluating the chemical characteristics of cellulose paper by thermal. An it were performed analysis such as tensile strength(TS), dissolved gas analysis(DGA) and high performance liquid chromatography(HPLC). Also for analyzing of correlation between insulating degradation characteristics, it was performed linear regression method as statistical treatment.

Removal Rate and Non-Uniformity Characteristics of Oxide CMP (Chemical Mechanical polishing) (산화막 CMP의 연마율 및 비균일도 특성)

  • Jeong, So-Young;Park, Sung-Woo;Park, Chang-Jun;Lee, Kyoung-Jin;Kim, Ki-Wook;Kim, Chul-Bok;Kim, Sang-Yong;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.223-227
    • /
    • 2002
  • As the channel length of device shrinks below $0.13{\mu}m$, CMP(chemical mechanical polishing) process got into key process for global planarization in the chip manufacturing process. The removal rate and non-uniformity of the CMP characteristics occupy an important position to CMP process control. Especially, the post-CMP thickness variation depends on the device yield as well as the stability of subsequent process. In this paper, every wafer polished two times for the improvement of oxide CMP process characteristics. Then, we discussed the removal rate and non-uniformity characteristics of post-CMP process. As a result of CMP experiment, we have obtained within-wafer non-uniformity (WIWNU) below 4 [%], and wafer-to-wafer non-uniformity (WTWNU) within 3.5 [%]. It is very good result, because the reliable non-uniformity of CMP process is within 5 [%].

  • PDF