• Title/Summary/Keyword: Chemical bonding

Search Result 1,179, Processing Time 0.027 seconds

Bonding to zirconia with resin cements (지르코니아와 레진 시멘트의 결합)

  • Lim, Bum-Soon;Her, Soo-Bok
    • The Journal of the Korean dental association
    • /
    • v.49 no.5
    • /
    • pp.265-278
    • /
    • 2011
  • The introduction of zirconia-based materials to the dental field broadened the design and application limits of, all-ceramic restorations. Most ceramic restorations are adhesively luted to the prepared tooth, however, resin bonding to zirconia components is less reliable than those to other dental ceramic systems. It is important for high retention, prevention of microleakage, and increased fracture resistance, that bonding techniques be improved for zirconia systems. Strong resin bonding relies on micromechanical interlocking and adhesive chemical bonding to the ceramic surface, requiring surface roughening for mechanical bonding and surface activation for chemical adhesion. In many cases, high strength ceramic restorations do not require adhesive bonding to tooth structure and can be placed using conventional cements which rely only on micromechanical retention. However, resin bonding is desirable in some clinical situations. In addition, it is likely that strong chemical adhesion would lead to enhanced long-term fracture and fatigue resistance in the oral environment.

Fabrication of PMMA Micro CE Chip Using IPA Assisted Low-temperature Bonding (IPA 저온 접합법을 이용한 PMMA Micro CE Chip의 제작)

  • Cha, Nam-Goo;Park, Chang-Hwa;Lim, Hyun-Woo;Cho, Min-Soo;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 2006
  • This paper reports an improved bonding method using the IPA (isopropyl alcohol) assisted low-temperature bonding process for the PMMA (polymethylmethacrylate) micro CE (capillary electrophoresis) chip. There is a problem about channel deformations during the conventional processes such as thermal bonding and solvent bonding methods. The bonding test using an IPA showed good results without channel deformations over 4 inch PMMA wafer at $60^{\circ}C$ and 1.3 bar for 10 minutes. The mechanism of IPA bonding was attributed to the formation of a small amount of vaporized acetone made from the oxidized IPA which allows to solvent bonding. To verify the usefulness of the IPA assisted low-temperature bonding process, the PMMA micro CE chip which had a $45{\mu}m$ channel height was fabricated by hot embossing process. A functional test of the fabricated CE chip was demonstrated by the separation of fluorescein and dichlorofluorescein. Any leakage of liquids was not observed during the test and the electropherogram result was successfully achieved. An IPA assisted low-temperature bonding process could be an easy and effective way to fabricate the PMMA micro CE chip and would help to increase the yield.

Clinical Guide for Adhesion of Zirconia Restoration (지르코니아 수복물의 접착을 위한 임상 가이드)

  • Hwang, Sung-Wook
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.58-69
    • /
    • 2014
  • In case of esthetic restorative procedure with zirconia restoration, we have to use resin cement because of not only just for retention but also esthetic reason. In such a clinical situation, we have to consider two bonding interfaces, one is tooth surface to resin cement and the other is zirconia surface to resin cement. There is well established bonding protocol between tooth surface to resin cement, but bonding protocol of zirconia surface to resin cement is still controversial. In scientific point of view, there are two mechanism for bonding of zirconia restoration.. One is mechanical retention and the other is chemical adhesion. However, we have three different options for bonding of zirconia restoration in clinical situation; 1) Tribo-chemical coating with silica and silane coupling agent 2) Zirconia primer with phosphate chemistry 3) Self-adhesive resin cement with phosphate chemistry.

EFFECTS OF THE DIFFERENT CERAMIC BRACKET BASES ON SHEAR BOND STRENGTH (도재브라켓 접착면의 처리방식이 전단결합강도에 미치는 영향)

  • Kim, Jin-Oh;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.957-967
    • /
    • 1994
  • The purpose of this study was to evaluate the effects of different bases of ceramic brackets on shear bond strength and to observe failure patterns of bracket bondings. Lower bicuspid brackets whose bases designed for the macromechanical and silane treated chemical bonding those for silane treated chemical bonding, those for micromechanical bonding, and those for macromechanical bonding were tested as experimental groups, and foil mesh-backed metal brackets as a control group. All the brackets were bonded with $Mono-Lok\;2^{(TM)}$ on the labial surface of extracted human lower bicuspids after etching the enamel with $38\%$ phosphoric acid solution for 60 seconds. The shear bond strengths were measured on the universal test machine after 24 hours passed in the $37^{\circ}C$ water bath. The gathered data were evaluated and tested by ANOVA and Duncan's multiple range test, and those results were as follows. The shear bond strengths of brackets for macromechanical and chemical bonding, those for chemical bonding, and those for micromechanical bonding were not different (p>0.05), but showed statistically higher than those of metal bracket and those of ceramic bracket for micromechanical bonding(p<0.05). The shear bond strengths of ceramic bracket for micromechanical bonding showed statistically lower than those of metal bracket(p<0.05). The enamel fractures and/or ceramic bracket fractures were observed in the cases of higher bond strength than that of metal bracket. These results supported that silane treated base of ceramic bracket show higher shear bond strength than that of metal bracket, and suggested that micromechanical form of ceramic bracket bases show higher shear bond strength than that of macromechanical form.

  • PDF

The Bonding of Interstitial Hydrogen in the NiTi Intermetallic Compound

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2045-2050
    • /
    • 2006
  • The interstitial hydrogen bonding in NiTi solid and its effect on the metal-to-metal bond is investigated by means of the EH tight-binding method. Electronic structures of octahedral clusters $Ti_4Ni_2$ with and without hydrogen in their centers are also calculated using the cluster model. The metal d states that interact with H 1s are mainly metal-metal bonding. The metal-metal bond strength is diminished as the new metal-hydrogen bond is formed. The causes of this bond weakening are analyzed in detail.

The Synthesis of Aziridine bonding agent and the Study of Characteristics (Aziridine계 Bonding agent 합성 및 특성연구)

  • Yang Eui-Seok;Ryu Hee-Jin;Yoo Kwang-Ho;Son Won-Jung;Lim Jeong-On
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.215-222
    • /
    • 2004
  • We synthesized a aziridine bonding agent that play an important role in increasing the adhesion property between polymer binders and solid particles. It increases the physical properties of polymer-based propellant. Chemical reaction between two materials increase the interface adhesion. We analyzed and studied the chemical characteristics of the material and physical properties of a liner applied the aziridine bonding agent. We also studied the adhesion property of a liner/propellant applied the aziridine bonding agent. 3M was use as control group. In accordance with US MIS (Missile Interim Specification) we examined the chemical properties. As a result of our study, newly synthesized aziridine bonding agent was as good as quality of 3M HX-868.

  • PDF

Effect of Mechanical Impact Treatment on Fiber Morphology and Handsheet Properties

  • Yung B. Seo;Kim, Dukki;Lee, Jong-Hoon;Yang Jeon
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2001.11a
    • /
    • pp.183-199
    • /
    • 2001
  • Alternative way of shaping fibers suitable for papermaking was introduced. Impact refining, which was done simply by hitting wet fibers with a metal weight vertically, was intended to keep the fibers from shortening and to cause mostly internal fibrillation. Virgin chemical pulp, its recycled one and OCC were used in the experiment. It was noticed from the experiment that impact refining on virgin chemical pulp kept the fiber length and Increased bonding properties greatly, However, in the recycled fibers from the chemical pulp, fiber length and bonding properties were decreased. In OCC, which seems to contain fractions of semi-chemical pulp and mechanical pulp (GP), and which is recycled pulp from corrugated boxes, fiber length and bonding properties were decreased disastrously. We believe recycled cellulosic fibers (recycled chemical pulp and OCC in this case), which went through hornification, were less resistant to the mechanical impact than virgin chemical pulp. For virgin chemical pulp, impact refining allowed no significant fiber length shortening, high WRV, and high mechanical strength.

  • PDF