DOI QR코드

DOI QR Code

IPA 저온 접합법을 이용한 PMMA Micro CE Chip의 제작

Fabrication of PMMA Micro CE Chip Using IPA Assisted Low-temperature Bonding

  • 차남구 (한양대학교 재료화학공학부 마이크로바이오칩센터) ;
  • 박창화 (한양대학교 재료화학공학부 마이크로바이오칩센터) ;
  • 임현우 (한양대학교 재료화학공학부 마이크로바이오칩센터) ;
  • 조민수 (한양대학교 재료화학공학부 마이크로바이오칩센터) ;
  • 박진구 (한양대학교 재료화학공학부 마이크로바이오칩센터)
  • Cha, Nam-Goo (Division of Materials and Chemical engineering, Micro Biochip Center, Hanyang University) ;
  • Park, Chang-Hwa (Division of Materials and Chemical engineering, Micro Biochip Center, Hanyang University) ;
  • Lim, Hyun-Woo (Division of Materials and Chemical engineering, Micro Biochip Center, Hanyang University) ;
  • Cho, Min-Soo (Division of Materials and Chemical engineering, Micro Biochip Center, Hanyang University) ;
  • Park, Jin-Goo (Division of Materials and Chemical engineering, Micro Biochip Center, Hanyang University)
  • 발행 : 2006.02.27

초록

This paper reports an improved bonding method using the IPA (isopropyl alcohol) assisted low-temperature bonding process for the PMMA (polymethylmethacrylate) micro CE (capillary electrophoresis) chip. There is a problem about channel deformations during the conventional processes such as thermal bonding and solvent bonding methods. The bonding test using an IPA showed good results without channel deformations over 4 inch PMMA wafer at $60^{\circ}C$ and 1.3 bar for 10 minutes. The mechanism of IPA bonding was attributed to the formation of a small amount of vaporized acetone made from the oxidized IPA which allows to solvent bonding. To verify the usefulness of the IPA assisted low-temperature bonding process, the PMMA micro CE chip which had a $45{\mu}m$ channel height was fabricated by hot embossing process. A functional test of the fabricated CE chip was demonstrated by the separation of fluorescein and dichlorofluorescein. Any leakage of liquids was not observed during the test and the electropherogram result was successfully achieved. An IPA assisted low-temperature bonding process could be an easy and effective way to fabricate the PMMA micro CE chip and would help to increase the yield.

키워드

참고문헌

  1. F. Xu, M. Jabasini, S, Liu and Y. Baba, Analyst, 118, 589 (2003)
  2. Z. Chen, Y. Gao, J. Lin, R. Su and Y. Xie, J. Chromatography A, 1038, 239 (2004) https://doi.org/10.1016/j.chroma.2004.03.037
  3. Z. G. Lin, S. C. Tseng, J. Wang and Y. C. Su, AlP Conference Proceedings, 712, 1547 (2004) https://doi.org/10.1063/1.1766748
  4. S. Y. Oh, J. H. Oh and J. W. Choi, J. Korean Ind. Eng. ?Chem., 14, 35 (2003)
  5. L. Juha, M. Bittner, D. Chvostova, V. Letal, J. Krasa, Z. Otcenasek, M. Kozlova, J. Polan, A.R. Prag, B. Rus, M. Stupka, J. Krzywinski, A. Andrejczuk, J. B. Pelka, R. Sobierajski, L. Rye, J. Feldhaus, F. P. Boody, M. E. Grisham, G. O. Vaschenko, C. S. Menoni and J. J. Rocca, J. Electron Spectroscopy and Related Phenomena, 144, 929 (2005) https://doi.org/10.1016/j.elspec.2005.01.258
  6. S. Tuomikoski and S. Franssila, Sensors and Actuators A, Physical, 110, 408 (2005) https://doi.org/10.1016/j.sna.2005.01.012
  7. Alternative Lithography, Edited by Clivia M. Sotomayor Torres, Kluwer Academic Publishers (2003)
  8. H, Schulz, D. Lyebyedyev, H. C. Scheer, K. Pfeiffer, G. Bleidiessel, G. Grutzner and J. Ahopelto, J. Vac. Sci, Technol. B, 18, 3582 (2000) https://doi.org/10.1116/1.1319821
  9. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Appl. Phys. Lett., 67, 3114 (1995) https://doi.org/10.1063/1.114851
  10. N. G. Cha, C. H. Park, H. W. Lim, J. G. Park, J. H. Jeong and E. S, Lee, Kor. J. Mater. Res., 15, 589 (2005) https://doi.org/10.3740/MRSK.2005.15.9.589
  11. Y. S. Heo, S. Chung, K. C. Choi, C. Chung, D. C. Han and J. K. Chang, J. Chromatography A, 1013, 111 (2003) https://doi.org/10.1016/S0021-9673(03)01359-1
  12. K. D. Altria, J. Chromatography A, 1, 1 (1999) https://doi.org/10.1016/S0021-9673(99)00350-7
  13. A. E. Guber, M. Heckele, D. Herrmann, A. Muslija, V. Saile, L. Eichhorn, T. Gietzelt, W. Hoffmann, P. C. Hauser, J. Tanyanyiwa, A. Gerlach, N. Gottschlich and G. Knebel, Chem. Eng. J., 101, 447 (2004) https://doi.org/10.1016/j.cej.2004.01.016
  14. U. Bilitewski, M. Genrich, S. Kadow and G. Mersal, Anal. Bioanal. Chem., 377, 556 (2003) https://doi.org/10.1007/s00216-003-2179-4
  15. G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung and Y. H. Lin, Sensors and Actuator B, 75, 142 (2001) https://doi.org/10.1016/S0925-4005(00)00745-0
  16. S. F. Ling, J. Luan, X. Li and W. L. Y. Ang, NDT & E International, 39, 13 (2006) https://doi.org/10.1016/j.ndteint.2005.05.003
  17. J. Wang, M. Pumera, M. P. Chatrathi, A. Escarpa, R. Konrad, A. Griebel, W. Dornger, H. Lowe, Electrophoresis, 23, 596 (2002) https://doi.org/10.1002/1522-2683(200202)23:4<596::AID-ELPS596>3.0.CO;2-C
  18. B. Grass, A. Neyer, M. Johnck, D. Siepe, F. Eisenbei, G. Weber, R. Hergenroder, Sensors and Actuators B, 72, 249 (2001) https://doi.org/10.1016/S0925-4005(00)00643-2
  19. From Wikipedia, http://en.wikipedia.org/wiki/Isopropyl_alcohol