• Title/Summary/Keyword: Chemical attack

Search Result 358, Processing Time 0.027 seconds

Kinetics and Mechanism of the Hydrolysis of N-(Benzenesulfonyl) benzimidoyl Chlorides

  • Kim, Tae-Rin;Kwon, Hyo-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.157-160
    • /
    • 1988
  • The rates of hydrolysis of N-(benzenesulfonyl) benzimidoyl chlorides (p-H, $p-CH_3,\;p-CH_3,\;p-NO_2\;and m-NO_2$) have been measured by UV spectrometry in 60% methanol-water at $25^{\circ}C$ and a rate equation which can be applied over wide pH range was obtained. Below pH 7.00, the substituent effect on the hydrolysis rate of N-(benzenesulfonyl) benzimidoyl chloride was found to conform to the Hammett ${\sigma}$ constant with ${\rho}$ = -0.91, whereas above pH 9.00, with ${\rho}$ = 0.94. On the basis of the rate equation obtained and the effect of solvent, substituents and salt, the following reaction mechanism were proposed; below pH 7.00, the hydrolysis of N-(benzenesulfonyl) benzimidoyl chloride proceeds by $S_N1$ mechanism, however, above pH 9.00, the hydrolysis is initiated by the attack of the hydroxide ion and in the range of pH 7.00-9.00, these two reactions occur competitively.

Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete (콘크리트의 황산 및 황산염 침투 저항성에 미치는 광물질 혼화재의 영향)

  • Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2010
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer, sewage and wastewater, soil, groundwater, and seawater etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to concrete matrix by forming expansive hydration products due to the reaction between portland cement hydration products and acid and sulfate ions. Objectives of this experimental research are to investigate the effect of mineral admixtures on the resistance to acid and sulfate attack in concrete and to suggest high-resistance concrete mix against acid and sulfate attack. For this purpose, concretes specimens with three types of cement (ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC) composed of different types and proportions of admixtures) were prepared at water-biner ratios of 32% and 43%. The concrete specimens were immersed in fresh water, 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solutions for 28, 56, 91, 182, and 365 days, respectively. To evaluate the resistance to acid and sulfate for concrete specimens, visual appearance changes were observed and compressive strength ratios and mass change ratios were measured. It was observed from the test results that the resistance against sulfuric acid and sodium sulfate solutions of the concretes containing mineral admixtures were much better than that of OPC concrete, but in the case of magnesium sulfate solution the concretes containing mineral admixtures was less resistant than OPC concrete due to formation of magnesium silicate hydrate (M-S-H) which is non-cementitious.

Characterization of Durability and Deterioration Eroded by Chemical Attack on the Concrete Lining in Conventional Tunnel (화학적 침식을 받은 재래식 터널 콘크리트 라이닝의 내구성능 및 열화특성)

  • Kim, Dong-Gyou;Lee, Seung-Tae;Jung, Ho-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.25-32
    • /
    • 2007
  • This study is to evaluate the effect of chemical attack on durability and deterioration of lining concrete in tunnel. Surface examination, nondestructive inspection, uniaxial compressive strength test, carbonation test, chloride diffusion test, micro-structural analysis were performed to analyze the deterioration of lining concrete in tunnel constructed 70 years ago. From surface examination results, the tunnel had been repaired and reinforced in several times. It has many cracks, water-leakage, efflorescence and exploitation. Compressive strengths obtained from nondestructive inspection and uniaxial compressive strength test have measured $17.5{\sim}34.7MPa$, and $12.8{\sim}40.3MPa$, respectively. Carbonation depth specimen cored from concrete lining has ranged from 3mm to 27mm. From chloride diffusion test, most specimens have low permeability. And the XRD analysis was able to detect ettringite and thaumasite, which were confirmed by SEM and EDS results to be the causes for the deterioration of lining concrete.

Bridge Foundation and Scour (교량기초와 세굴)

  • 곽기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.168-187
    • /
    • 2002
  • Scour is the physical or chemical attack of flowing water which excavates and carries away material from stream beds and banks. Especially, hydraulic structures such as bridge piers and abutments placed in the channel causes the changes of the flow pattern like acceleration, the formation of vortices, and scour around the structures. Channel scour, especially bridge pier scour is the leading cause of bridge failures. It is very important to apply appropriate methods for both of scour analysis and protection. In this paper, several methods world-widely used for bridge scour analysis and protection are introduced and compared.

  • PDF

Development of Mixing Model for High Durability Creek Concrete Having 300kgf/$\textrm{cm}^2$ Compressive Strength (압축강도 300kgf/$\textrm{cm}^2$ 내외의 하수암거용 고내구성 콘크리트 배합모텔 개발)

  • 이창수;윤인석;이규동;고석봉
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.271-274
    • /
    • 2001
  • Recently, we are facing with the trend of demanding high durability concrete for creek structures. When creek structures are deteriorated, it is very difficult to repair them. The objective of this paper is to develop a mixing model for high durability creek concrete having 300kg/$\textrm{cm}^2$ compressive strength. According to the result of durability experiment, high durability concrete for creek structures has high resistance of air permeability, absorption, chloride diffusion, and chemical attack.

  • PDF

A Study on the concrete pavement for early traffic opening day (콘크리트 도로포장의 조기개통에 관한 연구)

  • 임창덕;윤원곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.57-60
    • /
    • 1990
  • The purpose of this report is to study the traffic opening day of concrete pavement. For this purpose this paper studies on the propeties of various cement types which include the newly developed cement for the cement pavement regarding the resistance to the chemical attack caused by de-icing salt and the durability of the concrete pavement. Especially, traffic opening day of concrete pavement are discussed on site.

  • PDF

A Study on Design of Dry Floor Tile Unit Method System (바닥타일 건식공법용 수지매트 개발에 관한 연구)

  • 김상미;조상영;김성식;임남기;정병훈;김무성
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.22-27
    • /
    • 2001
  • The purpose of this study is development of dry floor tile method that practically used for improving wet method's defect, with resin mat design. PE resin used mat which satisfied with bonding test, waterproof test, resistance to chemical attack test, resistance to impact test and freezing and thawing test is confirmed the basic property.

  • PDF

The Strength Properties of Chemical Attack of Shotcrete using the Aluminate Accelerator (알루미네이트계 급결제를 사용한 숏크리트의 화학적침식에 대한 강도 특성)

  • Kim, Seong-Soo;Lee, Jung-Bae;Yoon, Ha-Young;Han, Seung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.245-248
    • /
    • 2006
  • This study investigated the strength of shotcrete with aluminate accelerator to connect with the proper repair methods or monitoring skills in subway, cable tunnel and underground storage. In order to approach these goals, the shotcrete specimens were exposed to acid, sulfate and seawater environments, and strength properties of the shotcrete suffering from the attacking sources were examined.

  • PDF

Sea Water Resistance Properties of Ground Solidification Materials for Eco Friendly SCW (친환경 SCW공법용 지반고화재 경화체의 내해수특성)

  • Jo, Jung-Kyu;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.116-117
    • /
    • 2017
  • The most important factor when designing coastal and offshore concrete structures is durability. However, concrete in marine environment is exposed to physical and chemical deterioration of seawater, which might easily lead to low quality. The purpose of the present study is to understand advantages of adding ground solidificaton materials by comparatively analyze the seawater resistance of general concrete and environmental-friendly ground solidification materials.

  • PDF

Evaluation of Durability on the Repair Materials of Concrete Structures (철근이 부식된 콘크리트구조물용 보수재료의 내구성능 평가)

  • 문한영;이창수;김성수;김홍삼;곽도연
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.857-860
    • /
    • 1998
  • Reinforced concrete structure is deteriorated, as time goes on. So many repair materials are developed for the repair. But repair materials have not been adequately applied so far. Because the datum which evaluated the repair materials are not sufficient. The object of this study is estimation f repair materials that is in general use and establish method of application. To acquire the result, we have made experiments on chemical attack, carbonation and chloride permeability test. The carbonation and chloride permeability are very different. Some repair materials are poorer than portland cement mortar.

  • PDF