• Title/Summary/Keyword: Chemical Visualization Method

Search Result 27, Processing Time 0.018 seconds

Flow Visualization Study around the Distributor of Plate-fin Heat Exchangers (판형-핀 열교환기 분배면의 유동 가시화 연구)

  • Jeong, Tae-Sik;Park, Seung-Ha;Kim, Chang-Su;Kim, Hyoung-Bum
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.37-41
    • /
    • 2012
  • Plate-fin heat exchanger is a kind of compact heat exchangers with a good performance in heat transfer. It is widely used in various engineering fields such as aerospace, chemical and biomedical industries. Quantitative and qualitative flow visualization study were performed using the water model of commercial plate-fin heat exchanger with header angles of $30^{\circ}$. The Reynolds number was 100. Conventional digital particle image velocimetry was used to measure the instantaneous velocity fields of the header region and the flow visualization using dye injection and hydrogen bubble method were applied to capture the qualitative flow characteristics. The results showed the existence of separation flow region at the junction area and the bottom wall of the exit region.

A Study on Analysis Method of Fire path for Shipping Chemical (선박적재 화학물의 화재사고 경로 분석기법에 관한 고찰)

  • Kang, Yu-Mi;Yang, Hyeongsun;Park, Deuk-Jin;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.267-267
    • /
    • 2019
  • The purpose of this study is to understand the risk of chemical product, Styrene Monomer(SM), shipped in a vessel. SM is harmful chemical product which can make injury, explosion and/or fire in a vessel. The understand of SM risk is very important to protect seafarer's body and vessel safety. This research can be expected that the understanding of SM risk by a seafarer's to prevent accidents by SM explosion/fire. In this study we used event tree analysis method using chemical reaction cased by explosion. As a result, we founded various chemical reaction and visualization for explosion path.

  • PDF

Real-Time Visualization Techniques for Sensor Array Patterns Using PCA and Sammon Mapping Analysis (PCA와 Sammon Mapping 분석을 통한 센서 어레이 패턴들의 실시간 가시화 방법)

  • Byun, Hyung-Gi;Choi, Jang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.99-104
    • /
    • 2014
  • Sensor arrays based on chemical sensors produce multidimensional patterns of data that may be used discriminate between different chemicals. For the human observer, visualization of multidimensional data is difficult, since the eye and brain process visual information in two or three dimensions. To devise a simple means of data inspection from the response of sensor arrays, PCA (Principal Component Analysis) or Sammon's nonlinear mapping technique can be applied. The PCA, which is a well-known statistical method and widely used in data analysis, has disadvantages including data distortion and the axes for plotting the dimensionally reduced data have no physical meaning in terms of how different one cluster is from another. In this paper, we have investigated two techniques and proposed a combination technique of PCA and nonlinear Sammom mapping for visualization of multidimensional patterns to two dimensions using data sets from odor sensing system. We conclude the combination technique has shown more advantages comparing with the PCA and Sammon nonlinear technique individually.

The Selective Visualization of Lignin Peroxidase, Manganese Peroxidase and Laccase, Produced by White Rot Fungi on Solid Media

  • Ryu, Won-Youl;Jang, Moon-Yup;Cho, Moo-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.130-134
    • /
    • 2003
  • A visual method for the selective screen Eng of lignin degrading enzymes, produced by white rot fungi (WRF), was investigated by the addition of coloring additives to solid media. Of the additives used in the enzyme production media, guaiacol and RBBR could be used for the detection of lignin peroxidase (LiP), manganese peroxidase (MnP) and lactase. Syringaldazine and Acid Red 264 were able for the detection of both the MnP and lactase, and the LiP and laccase, respectively, and a combination of these two additives was able to detect each of the ligninases produced by the WRF on solid media.

Liquid Animation for CG Production (CG 제작을 위한 유체 애니메이션)

  • Cha Dukhyun;Kim Janghee;Min Jungki;Ihm Insung;Kang Byungkwon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.51-54
    • /
    • 2003
  • Fluid is an effective element in computer animation. Recently, the techniques from CFD have been actively applied to CG production. In this paper, we describe our fluid animation system which implements a variety of established simulation and rendering methods. We also explain our new techniques such as chemical reaction and hardware-assisted fluid animation that are being developed to enhance the features of our software system.

  • PDF

A Visualization Study on the Effects of Ignition Systems on the Flame Propagation in a Constant Volume Combustion Chamber (가시화를 이용한 정적연소기에서 점화장치가 화염전파에 미치는 영향에 관한 연구)

  • Song, Jeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1652-1661
    • /
    • 2000
  • A visualization study using the schlieren method is adopted in an optically-accessible, cylindrical constant volume combustion chamber to identify the mechanism of ignition energy and ignition system interaction in spark ignited, lean gasoline-air mixture. In order to research the effects of ignition system on flame propagation, two kinds of ignition system are designed, and several kinds of spark plugs are tested and evaluated. To control the discharge energy, the dwell time is varied. The initial flame development is quantified in terms of 2-D images which provides information about the projected flame area and development velocity as a function of ignition system and discharge energy. The results show that high ignition energy and extended spark plug gap can shorten the combustion duration in lean mixtures. The material, diameter and configuration of electrodes the flame development by changing the transfer efficiency from electrical energy to chemical energy and discharge energy. However these factors do not affect of flame development as much a ignition energy or extended gap does.

Size measurement of electrosprayed droplets using shadowgraph visualization method (Shadowgraph 가시화 기법을 활용한 정전분무액적의 크기 측정)

  • Oh, Min-Jeong;Kim, Sung-Hyun;Lee, Myong-Hwa
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.151-158
    • /
    • 2017
  • Electrostatic precipitator is widely used to remove particulate matters in indoor air and industrial flue gas due to low pressure drop and high collection efficiency. However, it has a low collection efficiency for the submicrometer sized particles. Electrospraying is a potential method to increase the particle charging efficiency, which results in increased collection efficiency. Although particle charging efficiency is highly dependent upon droplet size, the effective measuring method of the droplets is still uncertain. Tap water was electrosprayed in this study, and the images of electrosprayed droplets were taken with a high speed camera coupled with several visualization methods in order to measure the droplets size. The droplet size distribution was determined by an image processing with an image-J program. As a result, a droplet measured by a laser visualization, had a half size of that by a Xenon light visualization. In addition, the experimentally measured droplet sizes were a good agreement with the predicted values suggested by $Fern{\acute{a}}ndez$ de la Mora and Loscertales(1994).

Mass Spectrometry Imaging of Microbes

  • Yang, Hyojik;Goodlett, David R.;Ernst, Robert K.;Scott, Alison J.
    • Mass Spectrometry Letters
    • /
    • v.11 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • Microbes influence many aspects of human life from the environment to health, yet evaluating their biological processes at the chemical level can be problematic. Mass spectrometry imaging (MSI) enables direct evaluation of microbial chemical processes at the atomic to molecular levels without destruction of valuable two-dimensional information. MSI is a label-free method that allows multiplex spatiotemporal visualization of atomic- or molecular-level information of microbial and microberelated samples. As a result, microbial MSI has become an important field for both mass spectrometrists and microbiologists. In this review, basic techniques for microbial MSI, such as ionization methods and analyzers, are explored. In addition, we discuss practical applications of microbial MSI and various data-processing techniques.

Visualization of Stage Calculations in Quaternary Reactive Distillation with Multiple Reactions (4성분계 다중반응증류 공정의 시각화)

  • Kang, Dohyung;Lee, Jae W.
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.713-719
    • /
    • 2014
  • When multiple reactions of quaternary mixtures take place in a reactive distillation column, the behavior of composition trajectory is analyzed by a visual-aided method. By adding additional vectors of multiple reactions and visualizing them in composition space, the composition of each component and extent of each reaction on an arbitrary stage can be easily estimated in terms of the composition trajectory and reaction cascade difference points. Moreover, for a given operating conditions, the number of total stages and position of optimum reaction zone can be determined by the visual-aided method. In this study, ethylene glycol synthesis with a side reaction is taken as an example and analyzed by the proposed graphical method. Through this method, the quaternary reactive distillation with multiple reactions can be analyzed without numerous experiments and simulations.

Development of Molecular Simulation Software for the Prediction of Thermodynamic Properties (열역학 물성 예측을 위한 분자 시뮬레이션 소프트웨어의 개발)

  • Chang, Jaee-On
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.361-366
    • /
    • 2011
  • By using Monte Carlo simulation method we developed a new molecular simulation software which can be used to predict the thermodynamic properties of organic compounds. Starting from molecular structure and intermolecular potential function, rigorous statistical mechanical principles give a probability distribution for the behavior of a system containing many molecules, which enables us to calculate macroscopic thermodynamic properties of the system. The software developed in this work, cheMC, is based on Windows platform providing with easy access. One can efficiently administrate simulations by using an intuitive interface equipped with visualization tool and chart generation. It is expected that molecular simulations supplement the equation of state approach and will play a more important role in the study of thermodynamic properties.