• Title/Summary/Keyword: Chemical Vapor Condensation

Search Result 79, Processing Time 0.025 seconds

Synthesis and Microstructure of Fe(C) Nanocapsules by Chemical Vapor Condensation (화학기상응축공정으로 제조한 Fe(C) 나노캡슐의 합성 및 미세구조)

  • Lee Jung-Han;Kim Sung-Duk;Kim Jin-Chun;Choi Chul-Jin;Lee Chan-Gyu
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.515-521
    • /
    • 2004
  • Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl $(Fe(CO)_5)$. Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below $1100^{\circ}C$ in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at $500^{\circ}C$ consisted of three layers of ${\alpha}$-Fe/$Fe_3C$/amorphous phases, but it had two phase core-shell structure which consited of $Fe_3C$ phase of core and graphite of shell at $1100^{\circ}C$.

Study of Magnetic Property of Fe-N Nanoparticle Using Mössbauer Spectroscopy (뫼스바우어 분광기법을 이용한 Fe-N 나노입자의 자기특성연구)

  • Oh, Sei-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2007
  • Three nano-sized Fe-N particle samples synthesized by Chemical Vapor Condensation (CVC) were analyzed using $M\"{o}ssbauer$ spectroscopy, XRD and BET. The synthesized nanoparticles consisted of ${\epsilon}-Fe_{2.12}N,\;{\gamma}'-Fe_4N,\;{\alpha}-Fe\;and\;{\gamma}-Fe.\;{\gamma}'-Fe_4N$ was mainly formed at the low decomposition temperature. With increasing decomposition temperature, the phase was changed to ${\gamma}-Fe$ via ${\epsilon}-Fe_{2.12}N$. For synthesizing Fe-N phases, this study implies that the low decomposition temperature is better than high temperature during Chemical Vapor Condensation.

Fabrication of Iron-Molybdenum Alloyed Nanoparticle and Nanowire using Chemical Vapor Condensation(CVC) (화학적 기상 응축(CVC)법을 이용한 철-몰리브덴합금 나노 입자와 와이어의 제조)

  • Ha, Jong-Keun;Cho, Kwon-Koo;Kim, Ki-Won;Ryu, Kwang-Sun
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.223-229
    • /
    • 2010
  • Iron(Fe)-Molybdenum(Mo) alloyed nanoparticles and nanowires were produced by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl($Fe(CO)_5$) and Molybdenum hexacarbonyl($Mo(CO)_6$). The influence of CVC parameter on the formation of nanoparticle, nanowire and size control was studied. The size of Fe-Mo alloyed nanoparticles can be controlled by quantity of gas flow. Also, Fe-Mo alloyed nanowires were produced by control of the work chamber pressure. Moreover, we investigated close correlation of size and morphology of Fe-Mo nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. Obtained nanoparticles and nanowires were investigated by field emission scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction.

Change of Particle Morphology and Ingredient Phase of WC and WC-Co Nanopowders Fabricated by Chemical Vapor Condensation during Subsequent Heat-Treatment (기상응축법으로 제조한 나노 WC및 WC-Co분말의 후속 열처리에 의한 상 및 협상 변화)

  • 김진천;하국현;김병기
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.124-129
    • /
    • 2004
  • Nanosized WC and WC-Co powders were synthesised by chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl(W(CO)$_6$) and cobalt octacarbonyl(Co$_2$(CO)$_8$). The microstructural changes and phase evolution of the CVC powders during post heat-treatment were studied using the XRD, FE-SEM, TEM, and ICP-MS. CVC powders were consisted of the loosely agglomerated sub-stoichimetric WC$_{1-x}$ and the long-chain Co nanopowders. The sub-stochiometric CVC WC and WC-Co powders were carburized using the mixture gas of CH$_4$-H$_2$ in the temperature range of 730-85$0^{\circ}C$. Carbon content of CVC powder controlled by the gas phase carburization at 85$0^{\circ}C$ was well matched with the theoretical carbon sioichiometry of WC, 6.13 wt%. During the gas phase carburization, the particle size of WC increased from 20 nm to 40 nm and the long chain structure of Co powders disappeared.

DEVELOPMENT OF MEMBRANE AND COLD-CONDENSATION PROCESS FOR REMOVAL AND RECOVERY OF VOLATILE ORGANIC COMPOUNDS

  • Kim, Sung-Soo;Lee, Jong-Hwa;Kim, Hyunki;Kim, Sang-Yong
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.69-72
    • /
    • 2003
  • Volatile organic compounds (VOC) cause air pollution problem and deterioration of atmosphere of petrochemical and fine chemical plants. Hybrid process of membrane and cold-condensation were developed and it effectively removed and recycled the VOC. Operation parameters of the process were optimized to attain hish removal and recycle of VOC. Composite membranes for organic vapor separation were developed in this work by PDMS coating and plasma polymerization on polypropylene and polysulfone support membranes. PDMS and various silicone monomers were tested for several organic vapors such as benzene, toluene, TCE, and HCFC, which are produced in petrochemical and fine chemical industry and causes air pollution problems if are released to atmosphere. Composite membranes prepared in this work showed appreciable performance in terms of organic vapor removal and reuse. Performance variation of the membranes was correlated with their surface characteristics.

  • PDF

Fabrication of Nanostructured WC/Co Alloy by Chemical Processes

  • Kim, Byoung-Kee;Ha, Gook-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.346-347
    • /
    • 2006
  • New manufacturing processes, such as thermochemical, mechanochemical and chemical vapor condensation processes have been developed to obtain nanostructured WC/Co materials. Nanoscale size WC/Co composite powders of near 100-150nm can be synthesizes by thermochemical and mechanochemical processes using water soluble precursors. Non-agglomerated and nano sized WC powder can be synthesized by the chemical vapor condensation process using metallorganic precursors as starting materials. In this paper, the scientific and technical issues on synthesis and consolidation of nanostructured WC/Co alloys produced by new chemical processes are introduced.

  • PDF

An Experiment on Performance Evaluation of a Vapor Condensation Type Air Washer System for Semiconductor Clean Rooms (반도체 클린룸용 수증기 응축식 에어와셔 시스템의 성능평가)

  • Yeo, Kuk-Hyun;Park, Sang-Tae;Yoo, Kyung-Hoon;Son, Seung-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.442-447
    • /
    • 2006
  • In semiconductor manufacturing clean rooms, it becomes important to remove airborne molecular contaminants as well as particulate contaminant in outdoor air introduced into clean rooms. One suitable control technique for these chemical contaminants is air washing by water in an outdoor air handling unit. In order to enhance the removal efficiency of chemical contaminants the effect of adding a heating and humidifying process before an air washer was examined.

  • PDF

A Study on Formation Process of $TiO_2$ Nanopowder by Numerical Analysis in Chemical Vapor Condensation Reactor (화학기상응축 반응기 내부의 유동해석을 통한 $TiO_2$ 나노분말의 형성과정에 관한 연구)

  • Yu, Ji-Hun;Choe, Cheol-Jin;Kim, Yong-Jin;Kim, Byeong-Gi
    • 연구논문집
    • /
    • s.33
    • /
    • pp.123-135
    • /
    • 2003
  • Using the residence time calculated by computer simulation for temperature and gas velocity distribution in CVC reactor, the kinetics on the formation of $TiO_2$ nano powder was analyzed for coagulation process, After abrupt increase of particle size at initial growth stage (< 0.2 $\mus$ ), the particle grew in proportion of cubic root to time. The numerically calculated particle sizes well agreed with the experimental results. However, the coarse rutile $TiO_2$ powders having the particle size of over 40 nm were formed on the surface of quratz rod in the reactor. it is thought that the fine anatase particles condensed on quratz rod were sintered in a heated CVC reactor to grow and transform to coarse rutile phase, and the critical size for phase transformation anstase-to-rutile was around 25 nm tn this study.

  • PDF

Control of Crystal Phase and Agglomeration of Iron Oxide Nanoparticles in Gas Phase Synthesis

  • Lee, Chang-Woo;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.424-425
    • /
    • 2006
  • The effects of reaction temperature and precursor concentration on the microstructure and magnetic properties of ${\gamma}-Fe_2O_3$ nanoparticles synthesized as final products of iron acetylacetonate in chemical vapor condensation (CVC) were investigated. Pure ${\gamma}-Fe_2O_3$ phase was obtained at temperature above $900^{\circ}C$ and crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles decreased with lowering precursor concentration. Also, the coercivity decreases with decreasing crystallite size of nanopowder. The lowest coercivity was 7.8 Oe, which was obtained from the ${\gamma}-Fe_2O_3$ nanopowder sample synthesized at precursor concentration of 0.3M. Then, the crystallite size of ${\gamma}-Fe_2O_3$ nanoparticles was 8.8 nm.

  • PDF