• 제목/요약/키워드: Chemical State

검색결과 3,667건 처리시간 0.031초

A Corresponding State Theory for the Viscosity of Liquids

  • Kim, Won-Soo;Lee, Suk-Bae
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.33-37
    • /
    • 2008
  • A phenomenological theory of viscosity previously proposed by the present authors8 is applied to the corresponding state theory for the viscosity of liquid. Through the process of the formulation of the corresponding state equation, we can find the simple viscosity equation with no parameters in a reduced form. The liquid viscosities of various substances can be calculated using this equation when we know only the values of the molecular weight and critical constant of substances. A corresponding state equation for the viscosity of liquid from this theory may be applicable to predicting viscosities of various substances under varying temperature and pressure. As a result, this equation may be widely applied to chemical engineering.

Sampling Methods for Quantification of Solid-state Phases in Powder Samples with Solid-state NMR Spectroscopy

  • Han, Oc-Hee;Kim, Sun-Ha;Ko, Tae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1077-1079
    • /
    • 2009
  • To minimize the variance in the quantification of solid-state phases in powder samples, gently placing polycrystalline samples one next to another directly in a sample holder is better than trying to mix them homogeneously prior to transferring to a sample holder. However, the solid-state cross polarization-magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy results demonstrated that it is essential in this sampling method to place all the samples in the location of consistent signal sensitivity. The same sampling method may be employed in other spectroscopic quantification techniques of solid-state phases if the method to limit the sample to the location with uniform signal sensitivity in the sample holder is adapted to each technique.

Effects of Amino Substitution on the Excited State Hydrogen Transfer in Phenol: A TDDFT Study

  • Kim, Sang-Su;Kim, Min-Ho;Kang, Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1481-1484
    • /
    • 2009
  • When isolated phenol or a small phenol-solvent cluster is excited to the $S_1\;state\;of\;{\pi}{\pi}^*$ character, the hydrogen atom of the hydroxyl group dissociates via a ${\pi}{\sigma}^*$ state that is repulsive along the O-H bond. We computationally investigated the substitution effects of an amino group on the excited state hydrogen transfer reaction of phenol. The time-dependent density functional theory (TDDFT) with B3LYP functional was employed to calculate the potential energy profiles of the ${\pi}{\pi}^*$ and the ${\pi}{\sigma}^*$ excited states along the O-H coordinate, together with the orbital shape at each point, as the position of the substituent was varied. It was found that the amino substitution has an effect of lowering the ${\pi}{\sigma}^*$ state and enhancing the excited state hydrogen transfer reaction.

Challenges and Improvements of All-Solid-State Batteries

  • Jihyun Jang
    • 대한화학회지
    • /
    • 제67권3호
    • /
    • pp.165-174
    • /
    • 2023
  • The development of all-solid-state batteries (ASSBs) has been gaining attention in recent years due to their potential to offer higher energy densities, improved safety, and longer cycle life compared to conventional lithium-ion batteries. However, several challenges must be addressed to achieve the practical application of ASSBs, such as the development of high-performance solid-state electrolytes, stable electrode-electrolyte interfaces, and cost-effective manufacturing processes. In this review paper, we present an overview of the current state of ASSB research, including recent progress in solid-state electrolyte and cathode/anode materials, and cell architecture. We also summarize the recent advancements and highlight the remaining challenges in ASSB research, with an outlook on the future of this promising technology.

Analysis of Secondary Battery Trends Using Topic Modeling: Focusing on Solid-State Batteries

  • Chunghyun Do;Yong Jin Kim
    • Asian Journal of Innovation and Policy
    • /
    • 제12권3호
    • /
    • pp.345-362
    • /
    • 2023
  • As the widespread adoption and proliferation of electric vehicles continue, the secondary battery market is experiencing rapid growth. However, lithium-ion batteries, which constitute a majority of secondary batteries, present high risks of fire and explosion. Solid-state batteries are thus garnering attention as the next-generation batteries since they eliminate fire hazards and significantly reduce the risk of explosions. Against this background, the study aimed to analyze research trends and provide insights by examining 2,927 domestic papers related to solid-state batteries over the past decade (2013-2022). Specifically, we used topic modeling to extract major keywords associated with solid-state batteries research and to explore the network characteristics across major topics. The changes in research on solid-state batteries were analyzed in-depth by calculating topic dominance by year. The findings provide an overview of the emerging trends in domestic solid-state battery research, and might serve as a valuable reference in shaping long-term research directions.

In-situ modification of PVC UF membrane by SiO2 sol in the coagulation bath during NIPS process

  • Cheng, Liang;Xu, Zhen-Liang;Yang, Hu;Wei, Yong-Min
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.317-325
    • /
    • 2018
  • Polyvinyl chloride (PVC) ultrafiltration (UF) membrane was modified by silica sol in the coagulation bath during non-solvent induced phase separation (NIPS) process. The effects of silica sol concentrations on the morphology, surface property, mechanical strength and separation property of PVC UF membranes were systematically investigated. PVC membranes were characterized by Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), contact angle goniometry and tensile strength measurement. The results showed that silica had been successfully assembled on the surface of PVC UF membrane. With the increase of silica sol concentration in the coagulation bath, the morphologies of PVC UF membranes changed from cavity structure to finger-like pore structure and asymmetric cross-section structure. The hydrophilicity and permeability of PVC UF membranes were further evaluated. When silica sol concentration was 20 wt.%, the modified PVC membrane exhibited the highest hydrophilicity with a static contact angle of $36.5^{\circ}$ and permeability of $91.8(L{\cdot}m^{-2}{\cdot}h^{-1})$. The structure of self-assemble silica had significant impact on the surface property, morphology, mechanical strength and resultant separation performance of the PVC membranes.

A State Space Modeling and Evolutionary Programming Approach to Automatic Synthesis of Chemical Processes

  • Choi, Soo-Hyoung;Lee, Bom-Sock;Chung, Chang-Bock
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1870-1873
    • /
    • 2004
  • The objective of this study is to investigate the possibility of chemical process synthesis purely based on mathematical programming when given an objective, feed conditions, product specifications, and model equations for available process units. A method based on a state space approach is proposed, and applied to an example problem with a reactor, a heat exchanger, and a separator. The results indicate that a computer can automatically synthesize an optimal process without any heuristics or expertise in process design provided that global optimization techniques are improved to be suitable for large problems.

  • PDF