• Title/Summary/Keyword: Chemical Reactor

Search Result 1,549, Processing Time 0.027 seconds

A Study on the Performance of Catalysts for the Recombination of Oxyhydrogen Gas Generated in Secondary Battery (이차전지내 발생하는 수소-산소 혼합기체 재결합용 촉매의 성능 측정 및 이론적 모델 연구)

  • Kim, Yong-Sik;Chang, Min-Hwan;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • The performance of catalysts for the recombination of oxyhydrogen gas was measured and compared with the results obtained from theoretical model. The oxyhydrogen gas was generated by the electrolysis cell and recombined through the fixed bed catalytic reactor. The yield that is the ratio of water-amount produced to the water-amount consumed in the electrolysis cell was increased with the increase of KOH concentration in electrolysis cell and the applied current. The catalyst 1 showed the best performance and the yield was under 60 %. The faradic yield calculated by Faraday's law showed about 100% in maximum with catalyst 1. The production rate of water generated by the recombination was 5-40 g/day dependent on the flow rate of mixed gas. Considering the results calculated from the pseudo-homogeneous catalytic reactor model, the hot point inside the reactor was moved to the direction of outlet and the maximum temperatures were $440-480^{\circ}K$ when the gas flow rate increased. The production rate of water calculated from the theoretical model showed good agreement with experimental results below the flow rate of $0.5cm^3/sec$, but there were much differences above that flow rate.

Comparison of Solid Circulation Characteristics with Change of Lower Loop Seal Geometry in a Circulating Fluidized Bed (순환유동층에서 하부 루프실 형태 변화에 따른 고체순환 특성 비교)

  • Lee, Dong-Ho;Jo, Sung-Ho;Jin, Gyoung-Tae;Yi, Chang-Keun;Ryu, Ho-Jung;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.522-529
    • /
    • 2014
  • Circulating fluidized bed system consists of SEWGS reactor - lower loop seal - regeneration reactor - riser - cyclone - upper loop seal has been used for solid circulation between the SEWGS reactor and the regeneration reactor in a SEWGS system for pre-combustion $CO_2$ capture. A vertical type lower loop seal has been used in current system but this lower loop seal requires high gas flow rate through the lower loop seal for fluidization and smooth solid circulation, and consequently, causes slugging behavior sometimes. To overcome these disadvantages, inclined type lower loop seal was proposed by this study. Solid circulation characteristics with change of lower loop seal geometry were measured and compared in a bubbling - bubbling - riser type circulating fluidized bed using $CO_2$ absorbent (P-78) as bed material at ambient temperature and pressure. We could conclude that the inclined lower loop seal is better than the vertical type lower loop seal from the viewpoints of minimum flow rate requirement for stable solid circulation and solid height change during solid circulation.

Molecular Analysis of the Microorganisms in a Thermophilic CSTR used for Continuous Biohydrogen Production (연속수소생성에 사용되는 고온 CSTR 내의 미생물의 분자적 분석)

  • Oh, You-Kwan;Park, Sung-Hoon;Ahn, Yeong-Hee
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.431-437
    • /
    • 2005
  • Molecular methods were employed to investigate microorganisms in a thermophilic continuous stirred tank reactor(CSTR) used for continuous $H_2$ production. The reactor was inoculated with heat-treated anaerobic sludge and fed with a glucose-based medium. Denaturing gradient gel electrophoresis showed dynamic changes of bacterial populations in the reactor during 43 days of operation. Gas composition was constant from approximately 14 days but population shift still occurred. Populations affiliated with Fervidobactrium gondwanens and Thermoanaerobacterium thermosaccharolyticum were dominant on 21 and 41 days, respectively. Keeping pH of the medium at 5.0 could suppress methanogenic activity that was detected during initial operation period. $CH_4$ and mcrA detected in the samples obtained from the reactor or inoculum suggested the heat treatment condition employed in this study is not enough to remove methanogens in the inoculum. PCR using primer sets specific to 4 main orders of methanogens suggested that major $H_2$-consuming methanogens in the CSTR belong to the order Methanobacteriales.

Thermophilic Biohydrogen Production from Glucose with a Long-term Operation of CSTR (CSTR의 장기운전을 통한 포도당으로부터의 고온 수소생산)

  • Ahn, Yeong-Hee;Oh, You-Kwan;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.425-430
    • /
    • 2005
  • Thermophilic $H_2$ was produced for 1 year using a bench-scale continuous stirred tank reactor(CSTR). The CSTR was inoculated with anaerobically digested sludge after heat treatment and fed with a glucose-based medium. The reactor showed relatively short start-up period(30 days) and high maximal $H_2$ yield(2.4 mol $H_2/mol$ glucose). Keeping pH 5.0 or less suppressed methanogenic activity. Bacteria affiliated with Thermoanaerobacterium thermosaccharolyticum kept being dominant from approximately 40 days as determined by DGGE. Environmental perturbation(pH or temperature) caused the decrease of biomass concentration in the reactor and the instability of reactor performance, $H_2$ production rate and $H_2$ yield. The unstable performance was accompanied with high concentration of lactate in the effluent. Taken together, the poor recovery of CSTR after perturbations could be partly explained by low biomass concentration and/or metabolic shift of the major population in the CSTR.

Catalytic Hydrogenation of Triglyceride in a Semi-batch Reactor (Semi-batch 반응기에서의 트리글리세라이드 접촉 수소화 반응)

  • An, Jae-Yong;Lee, Choul-Ho;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • The aim of this study is to investigate the feasibility of an Ni-SA catalyst, which was prepared from nickel, kieselguhr, and alumina, for the hydrogenation of triglyceride in a bench-scale reactor. Ni-SA powders were prepared by precipitating nickel precursors on a silica and alumina support. The powder was reduced in a hydrogen flow, mixed with a saturated palm oil, and then cooled to prepare an Ni-SA catalyst tablet. The sizes of NiO crystals of a commercial Pricat catalyst and the Ni-SA catalyst prepared in this study were $35{\AA}$ and $38{\AA}$, respectively. The pore volume and pore size of the Ni-SA catalyst was much larger than the pore volume and pore size of the Pricat catalyst. In addition, the average particle size of the Ni-SA catalyst was much smaller than that of the Pricat catalyst. The triglyceride hydrogenation reaction was carried out in a semi-batch reactor using catalysts impregnated with oil and molded into tablets. It was found that the Ni-SA catalyst was superior to the commercial Pricat catalyst in triglyceride hydrogenation, which could be ascribed to the raw material and the products being less influenced by the diffusion resistance in the pores of the Ni-SA catalyst. The Ni-SA catalyst prepared in this study has the potential to replace the Pricat catalyst as a catalyst for use in the commercial process for hydrogenation of triglyceride.

활성탄 담체가 포함된 Jet-Loop Reactor를 이용한 종합염색폐수처리

  • Park, Jong-Tak;Lee, Gil-Ho;Ryu, Won-Ryul;Jo, Mu-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.406-409
    • /
    • 2000
  • For the effective treatment of dye-processing wastewater, JLR(Jet-Loop Reactor) with active carbon supports were investigated. BOD removal efficiency was found as 99% when influent BOD concentration of dye-processing wastewater was 400 mg/L. $COD_{Mn}$ of effluent removal efficiencies were found as 86${\sim}$ 89% when these of activated sludge reactor were 62${\sim}$72%. Also, color removal efficiencies were found as 84${\sim}$87% when these of activated sludge reactor were 72%${\sim}$77%. After JLR with active carbon supports had been used, all of the $COD_{Mn}$, $COD_{Cr}$ and color removal efficiencies Increased when chemical precipitation was done. Consequently, JLR with active carbon supports was proved to be more excellent than the activated sludge reactor.

  • PDF

Removal of Divalent Heavy Metal Ions by Na-P1 Synthesized from Jeju Scoria (제주 스코리아로부터 합성된 Na-P1 제올라이트에 의한 2가 중금속 이온의 제거특성)

  • Kam, Sang-Kyu;Hyun, Sung-Su;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1337-1345
    • /
    • 2011
  • The removal performances of divalent heavy metal ions ($Pb^{2+}$, $Cu^{2+}$, $Cd^{2+}$, $Sr^{2+}$ and $Mn^{2+}$) were studied using the Na-P1 zeolite synthesized from Jeju scoria in the batch and continuous fixed column reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite decreased in the order of $Pb^{2+}$ > $Cu2^{2+}$ > $Cd^{2+}$ > $Sr^{2+}$ > $Mn^{2+}$ based on the selectivity of each ion to ionic exchange site of Na-P1 zeolite for single and mixed solutions in batch or continuous fixed column reactor. For mixed solution, each heavy metal ion uptake was lower than that in single solution, and especially the uptake for $Mn^{2+}$ decreased greatly. In batch reactor, the uptakes of heavy metal ions by synthetic Na-P1 zeolite were described by Freundlich or Langmuir equation, but they followed the former better than the latter. In continuous fixed column reactor, the maximum ion exchange capacity obtained for each of heavy metal ions, was about 90----- of that in batch reactor. The uptakes of heavy metal ions by synthetic Na-P1 zeolite increased with the increase of initial heavy metal concentration and solution pH, and the decrease of the amount and particle size of synthetic zeolite.

MATHEMATICAL MODEL OF SULFUR UTILIZING AUTOTROPHIC DENITRIFICATION IN AN UP-FLOW PACKED-BED REACTOR BASED ON BIOMASS DISTRIBUTION

  • Park, Woo-Shin;Ahn, Yoeng-Hee;Jung, Kyung-Ja;Tatavarty, Rameshwar;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.191-198
    • /
    • 2005
  • A novel technology for the removal of nitrogen from wastewater, an autotrophic denitrification process with sulfur particles, has been developed. A respirometer was employed to monitor the nitrogen gas produced in the reactor, while 4',6-diamidino-2-phenylindole staining was employed to investigate the biomass distribution in terms of cell number according to the reactor height. From the respirometric monitoring, the denitrification reaction was defined as a first order reaction. The reactor was divided into 7 sections and biomass was analyzed in each section where cell number was ranged from $4.8\;{\times}\;10^6\;to\;8.7\;{\times}\;10^7$ cells/g dry weight of sulfur. Cells placed mostly in the lower layer ( < 10 cm of height). A function for biomass distribution was obtained with non-linear regression. Then a mathematical model has been developed by combining a plug-flow model with the biomass distribution function. The model could make a vertical profile of the up-flow packed-bed reactor resulting in a reasonable comparison with measured nitrate concentration with 5% of error range.

A feasibility study of a pilot scale two-phase anaerobic digestion with ultra filtration for the treatment of garbage leachate (음식물 탈리액 처리를 위한 파일럿 규모의 막결합형 2상 혐기성 소화 공정 가능성 평가)

  • Lee, Eun-young;Heo, Ahn-hee;Kim, Hyung-kuk;Kim, Hee-jun;Bae, Jae-ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.539-545
    • /
    • 2009
  • A feasibility of a pilot scale two-phase anaerobic digestion with ultra filtration system treating garbage leachate were evaluated. The treatment system consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. The average COD removal efficiency of the treatment system was 95% up to the OLR of 3.1 g COD/L/d. The higher COD removal efficiency with membrane unit resulted from the removal of some portion of soluble organics by membrane as well as particulate materials. When the membrane unit was in operation, bulk liquid in acidogenic and methanogenic reactors was partially interchanged, which maintained the acidogenic reactor pH over 5.0 without external chemical addition. Also, with the production of methane in the acidogenic reactor, the organic loading rate of the methanogenic reactor reduced. The initial flux of the membrane unit was $50{\sim}60L/m^2/hr$, but decreased to $5 L/m^2/hr$ after 95 days of operation due to clogging caused by particulate materials such as fibrous materials in garbage leachate. To prevent clogging caused by particulate materials, a pretreatment system such as screening is required. With the improvement with membrane unit operation, the two-phase anaerobic digestion with ultra filtration system is expected to have the possibility of treating garbage leachate.

Catalystic effect of Sludge on $NO_x$ removal in Packed bed reactor (Packed bed형 반응기에서 $NO_x$ 제거에 미치는 슬러지의 촉매효과)

  • Park, Jae-Yoon;Lee, Dong-Hoon;Koh, Hee-Suk;Jung, Jang-Gun;Bae, Myung-Whan;Kim, Jong-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1780-1782
    • /
    • 2001
  • In this experiment, an attempt to use the sludge pellets as catalyst for NO removal from simulated gas is experimentally investigated by using $BaTiO_3$-sludge packed-bed reactor of plate-plate geometry. An experimental investigation has been conducted for NO concentration of 50[ppm] balanced with air, a gas flow rate of 5[1/min]. $BaTiO_3$ pellets are filled at upstream of reactor for corona discharge and sludge pellets are put at downstream of reactor for catalystic effect. The volume rate of sludge pellets to $BaTiO_3$ pellets is 50[%] and AC voltage to dischare the gases was supplied. In the result, when sludge pellets is seperated to $BaTiO_3$ by other reactor and AC voltage is supplied to $BaTiO_3$ and sludge pellets NO, $NO_2$ removal rate is higher. When gas temperature increase from room temperature to 100[$^{\circ}C$], NO removal is decreased while $NO_2$ concentration is independent on gas temperature. This result suggest that the removal mechanism of active oxyzen species and $NO_2$ in sludge is not absorption, but chemical reaction. Temperature of heating treatment is on sludge pellets increased, $NO_x$ removal rate is decrease. It is thought that organic compound is removed by heating treatment.

  • PDF