• Title/Summary/Keyword: Chemical Reactor

Search Result 1,549, Processing Time 0.03 seconds

An Experimental Study of Power Saving Technique in Non-thermal Plasma DeSOx/DeNOx Process (저온 플라즈마 탈황물질 공정의 운전전력 절감을 위한 실험연구)

  • 송영훈;최연석;김한석;신완호;길상인;정상현;최갑석;최현구;김석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.487-494
    • /
    • 1996
  • Simultaneous effects of $C_2H_4$ injection and heterogeneous chemical reactions on non-thermal plasma process to remove $SO_2$ and NOx from flue gas were investigated in the present experimental study. The present results showed that 40% of the electrical power can be reduced in $C_2H_4$ injection and heterogeneous chemical reaction are simultaneously included in the non-thermal plasma precess. As an effort to apply the non-thermal plasma technique to practical flue gas treatment system, a wire-plate type reactor which has technically similar geometry of industrial electrostatic precipitators is used instead of other types of reactors, such as wire-cylinder, packed-bed and surface discharge which are inappropriate to industrial application. In the present study, the photo pictures of positive streamer corona taken by ICCD camera, voltage and current oscillograms, and design criteria of a wire-plate type reactor are also shown, which are needed for industrial application of the non-thermal plasma process.

  • PDF

Simultaneous Removal Characteristics of NOx, SOx from Combustion Gases using Plasma Chemical Reaction (플라즈마 화학반응에 의한 연소가스 중 NOx. SOx 동시제거 특성)

  • 박재윤;고용술;이재동;손성도;박상현;고희석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.406-409
    • /
    • 1999
  • Experimental Investigations were carried out to remove NOx, SOx simultaneously from simulated flue gas[NO(0.02%)-SO$_2$(0.08%)-$CO_2$-Air-$N_2$] by using a plasma chemical reaction. Ammonia gas(14.81%) balanced by argon was diluted by all and was Introduced to mall simulated flue gas duct through NH$_3$ Injection system which is in downstream of reactor. The NH$_3$ molecular ratio(MR) was determined based on (NH3) to [NO+S0$_2$]. MR is 1, 1.5, 2.5. The NOx removal rate significantly increased with increasing NaOH bubble quantity. The SO$_2$ removal rate was not significantly effected by applied voltage, however it fairly Increased with increasing NH$_3$ molecule ratio. By-product aerosol particle was observed by XRD(X-ray diffraction) after sampling, The NOx, SOx removal rates, when H2O vapour bubbled by dry all was injected to plasma reactor, were better than those of other cases. When aqueous NaOH solution(20%) bubbled by 2.5( ι /min) of $N_2$ and 0.5 ( ι /min) NH$_3$(MR=1.5) were injected to simulated flue gas, The NOx. SOx removal rate was 95 ~ 100[%]

  • PDF

Study on Methane Steam Reforming utilizing Concentrated Solar Energy -Part 1. In search of the best reaction condition for steam reforming of methane- (태양열을 이용한 메탄의 수증기 개질 반응기 연구 -Part 1. 수증기 개질 반응에서의 최적 반응 조건 탐색-)

  • Kim, Ki-Man;Nam, Woo-Seok;Han, Gui-Young;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.13-19
    • /
    • 2005
  • The reaction of steam reforming of methane with commercial catalysts was conducted for thermochemical heat storage. The reaction conditions were investigated for temperature range of 700 to $900\;^{\circ}C$ and steam to carbon mole ratios between 3.0 and 5.0. The reactor was made of stainless steel and it's dimension was 12 cm inside diameter and 6cm long. The effects of space velocity and reactants mole ratio and temperature on the methane conversion and CO selectivity were examined. Optimum reaction condition was determined. There was not a significant difference of methane conversion and CO selectivity compared to conventional reactor.

Steam reforming of methane in a solar receiver reactor (SiC foam에 코팅된 상용 촉매에서의 집광된 태양열을 이용한 메탄 수증기개질 반응 연구)

  • Kim, Ki-Man;Han, Gui-Young;Seo, Tae-Beom;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • Steam reforming of methane using Xe-arc solar simulator was studied for the application of concentrated solar energy into chemical reaction. The reactor, a volumetric absorber, consisted of a porous ceramic foam disk coated with commercial reforming catalyst. Operating temperature was in the range of $450\;-\;550^{\circ}C$ and the excess steam ratio to methane was from 3.0 to 5.0. At the steady-state condition, the conversion of methane Increased with temperature in the range of 15 % - 30 % and the experimentally determined conversion was found to be close to theoretical equilibrium conversion. It was also found that the CO selectivity slightly decreased with excess steam ratio. Finally, the conversion of methane decreased significantly with space velocity of reactants.

Preparation of Gallium Nitride Powders and Nanowires from a Gallium(III) Nitrate Salt in Flowing Ammonia

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.51-54
    • /
    • 2004
  • Gallium nitride (GaN) powders were prepared by calcining a gallium(III) nitrate salt in flowing ammonia in the temperature ranging from 500 to 1050 $^{\circ}C$. The process of conversion of the salt to GaN was monitored by X-ray diffraction and $^{71}Ga$ MAS (magic-angle spinning) NMR spectroscopy. The salt decomposed to ${\gamma}-Ga_2O_3$ and then converted to GaN without ${\gamma}-{\beta}Ga_2O_3$ phase transition. It is most likely that the conversion of ${\gamma}-Ga_2O_3$ to GaN does not proceed through $Ga_2O$ but stepwise via amorphous gallium oxynitride ($GaO_xN_y$) as intermediates. The GaN nanowires and microcrystals were obtained by calcining the pellet containing a mixture of ${\gamma}-Ga_2O_3$ and carbon in flowing ammonia at 900 $^{\circ}C$ for 15 h. The growth of the nanowire might be explained by the vapor-solid (VS) mechanism in a confined reactor. Room-temperature photoluminescence spectra of as-synthesized GaN powders obtained showed the emission peak at 363 nm.

Solid Circulation and Reaction Characteristics of Mass Produced Particle in a 0.5 MWth Chemical Looping Combustion System (0.5 MWth 급 케미컬루핑 연소시스템에서 대량생산 입자의 고체순환 특성 및 반응 특성)

  • RYU, HO-JUNG;JO, SUNG-HO;LEE, SEUNG-YONG;LEE, DOYEON;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;KIM, JUNGHWAN;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.170-177
    • /
    • 2019
  • Continuous solid circulation test at high temperature and high pressure conditions and batch type reduction-oxidation tests were performed to check feasibility of a 0.5 MWth chemical looping combustion system. Pressure drop profiles were maintained stable during continuous solid circulation up to 16 hours. Therefore, we could conclude that the solid circulation between an air reactor and a fuel reactor could be smooth and stable. The measured fuel conversion and $CO_2$ selectivity were high enough even at high capacity and even after cyclic tests. Therefore, we could expect high reactivity of oxygen carrier at real operation condition.

The Risk Assessment of Runway Reaction in the Process of Fridel-Crafts Acylation for Synthesis Reaction (화합물 합성반응 중 Fridel - Crafts Acylation 공정에서의 폭주반응 위험성평가)

  • Lee, Kwangho;Kim, Wonsung;Jun, Jinwoo;Joo, Youngjong;Park, Kyoshik
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.24-30
    • /
    • 2021
  • Heat is generated during the synthesis and mixing process of chemical compounds due to a change in activation energy during the reaction. A runaway reaction occurs when sufficient heat is not removed during the heat control process within a reactor, rapidly increasing the temperature, reaction speed, and rate of heat generation inside the reactor. A risk assessment was executed using an RC-1 (Reaction Calorimeter) during Friedel-Crafts acylation. Friedel-Crafts acylation runs the risk of rapid heat generation during Active Pharmaceutical Ingredient (API) manufacturing; it was used to confirm the risk of a runaway reaction at each synthesis stage and during the mixing process. This study used experimental data to develop a safety efficiency improvement plan to control the risks of runaway and other exothermic reactions, which was implemented at the production site of a chemical plant.

Economic implications of optimal operating conditions in a full-scale continuous intermittent cycle extended aeration system (ICEAS) (실규모 연속유입간헐폭기 공정(ICEAS)에서 최적운전조건이 경제성에 미치는 영향)

  • Yong-jae Jeong;Yun-Seong Choi;Seung-Hwan Lee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.38 no.1
    • /
    • pp.29-38
    • /
    • 2024
  • Wastewater management is increasingly emphasizing economic and environmental sustainability. Traditional methods in sewage treatment plants have significant implications for the environment and the economy due to power and chemical consumption, and sludge generation. To address these challenges, a study was conducted to develop the Intermittent Cycle Extended Aeration System (ICEAS). This approach was implemented as the primary technique in a full-scale wastewater treatment facility, utilizing key operational factors within the standard Sequencing Batch Reactor (SBR) process. The optimal operational approach, identified in this study, was put into practice at the research facility from January 2020 to December 2022. By implementing management strategies within the biological reactor, it was shown that maintaining and reducing chemical quantities, sludge generation, power consumption, and related costs could yield economic benefits. Moreover, adapting operations to influent characteristics and seasonal conditions allowed for efficient blower operation, reducing unnecessary electricity consumption and ensuring proper dissolved oxygen levels. Despite annual increases in influent flow rate and concentration, this study demonstrated the ability to maintain and reduce sludge production, electricity consumption, and chemical usage. Additionally, systematic responses to emergencies and abnormal situations significantly contributed to economic, technical, and environmental benefits.

Synthesis of Methanol and Formaldehyde by Partial Oxidation of Methane (메탄의 부분산화에 의한 메탄올 및 포름알데히드의 합성)

  • Hahm, Hyun-Sik;Shin, Ki-Seok;Kim, Song-Hyoung;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • Methanol and formaldehyde were produced directly by the partial oxidation of methane. The catalysts used were mixed oxides of late-transition metals, such as Mn, Fe, Co, Ni and Cu. The reaction was carried out at $450^{\circ}C$, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by XRD, TPD and BET apparatus. Of the catalysts, A-Mn0.2-6, which contains 0.2 mole of Mn and calcined at $600^{\circ}C$, showed the best catalytic activity: 3.7% methane conversion, and 30 and 28% methanol and formaldehyde selectivities, respectively. The catalytic activity was changed with the content of Mn and the calcination temperature. Catalytic activity increased with the specific surface areas of the catalysts. With XRD, it was found that the structure of the catalysts are changed with calcination temperature. Through $O_2-TPD$ experiment, it was found that the catalysts showing good catalytic activity showed $O_2$ desorption peak around $800^{\circ}C$.

Absorption Rate of Carbon Dioxide into Blended Ammonia Solution with Amine Additives in a Stirred Cell Reactor (교반셀에서 측정한 아민첨가 암모니아수 흡수제의 이산화탄소 흡수 반응 속도 측정)

  • Park, HoSeok;You, Jong Kyun;Hong, Won Hi;Kim, Jong Nam
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.185-189
    • /
    • 2009
  • Absorption rate of carbon dioxide into aqueous ammonia absorbent(10 wt%) was measured in the temperature range from 293 K to 337 K using a stirred-cell reactor. The reaction rate constant was correlated with the Arrehnius equation and the activation energy was 50.42 kJ/mol. $CO_2$ absorption rate into modified ammonia absorbent was also investigated. For the modified ammonia absorbent, 1 wt% sterically hindered amines of 2-amino-2-methyl-1-propanol(AMP), 2-amino-2-methyl-1,3-propandiol(AMPD) and 2-amino-2-ethyl-1,3-propandiol(AEPD) were used as additives. The $CO_2$ absorption rate increased by adding 1 wt% of the amine additive, in the case of AMP additive, the absorption rate enhanced by about 53%.