• 제목/요약/키워드: Chemical Process

검색결과 10,321건 처리시간 0.036초

Dynamic Matrix Control의 응용 (Application of dynamic matrix control)

  • 문일;여영구;송현근;박원희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.652-657
    • /
    • 1987
  • The Dynamic Matrix Control(DMC) technique was applied to nonlinear and nonminimum phase system. System model was identified by using Least Square method. Desired output trajectory was prespecified and input suppression parameter was also introduced. It was shown that DMC technique worked with great success in solving both nonminimum phase system and nonlinear system.

  • PDF

Advances in Chemical Process Control and Operation -A view experienced in joint university-industry projects

  • Ohshima, Masahiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.1.2-6
    • /
    • 1994
  • A state or the arts in Japanese chemical process control is reviewed based on experience in applying advanced process control schemes to several industrial chemical processes. The applications validate model predictive control (MPC), the most popular advanced control scheme in the process control community, as, indeed, a powerful and practical control algorithm. However, at the same time, it is elucidated that MPC can solve only the control algorithm part of the problem and one needs chemical and systems engineering aspects to solve the entire problem. By illustrating several industrial process control problems, the need for chemical engineering aspects as well as the future direction for process control are addressed, especially in light or current attitudes toward product quality.

  • PDF

Simulation of the dihydrate process for the production of phosphoric acid

  • Yeo, Y.K.;Cho, Y.S.;Moon, B.K.;Kim, Y.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.875-878
    • /
    • 1988
  • In this work it is shown how the methods used in chemical engineering for the analysis and simulation of processes may be applied to the actual phosphoric acid plant. Attention has been focused on the dihydrate process for which the necessary fundamental experimental data and plant operation data are available. The results of the simulation have shown that a reasonable description of the process at hand is possible by the proposed method. However, because of the complexity of the process, of the limited basic experimental data reported in literature, and the limitations of mathematics, the model was somewhat idealized and gave a reliable representation of the influence of only a few of the variables that affect the performance of the plant.

  • PDF

Analytical design of constraint handling optimal two parameter internal model control for dead-time processes

  • Tchamna, Rodrigue;Qyyum, Muhammad Abdul;Zahoor, Muhammad;Kamga, Camille;Kwok, Ezra;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • 제36권3호
    • /
    • pp.356-367
    • /
    • 2019
  • This work presents an advanced and systematic approach to analytically design the optimal parameters of a two parameter second-order internal model control (IMC) filter that satisfies operational constraints on the output process, the manipulated variable as well as rate of change of the manipulated variable, for a first-order plus dead time (FOPDT) process. The IMC parameters are designed to minimize a control objective function composed of the weighted sum of the error between the process variable and the set point, and the rate of change of the manipulated variable, and to satisfy the desired constraints. The feasible region of the constrained IMC control parameters was graphically analyzed, as the process parameters and the constraints varied. The resulting constrained IMC control parameters were also used to find the corresponding industrial proportional-integral controller parameters of a Smith predictor structure.

탄소나노튜브의 제조 및 광학적 응용 연구 (Synthesis of Carbon Nanotube and Optical Application)

  • 주영준;소원욱;김희주;최호석;문상진
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.247-257
    • /
    • 2003
  • To investigate the effect of preparing condition on the physical properties of carbon nanotubes suitable for optical applications, carbon nanotubes were synthesized by thermal chemical vapor deposition using Ni particles as a catalyst on stainless steel substrate and acetylene as a reactant gas. To examine the physical and optical properties, SEM, TEM, Ram an, UV-visible, and photoluminescence spectroscopy were used. The physical properties of carbon nanotubes such as diameter, degree of growth density and morphology were closely related to such experimental conditions as Ni particle size, growing pressure, and etching condit on of Ni particles, it appeared from the light absorbance and photoluminescence spectra of carbon nanotube mixture prepared with an addition of a photopolymer, P3HT(Poly(3-hexylthIop hene)) that carbon nanotube could do a role as a kind of electron acceptor for solar cell application.

화학기계적 연마(CMP) 공정에서의 트라이볼로지 연구 동향 (Tribology Research Trends in Chemical Mechanical Polishing (CMP) Process)

  • 이현섭
    • Tribology and Lubricants
    • /
    • 제34권3호
    • /
    • pp.115-122
    • /
    • 2018
  • Chemical mechanical polishing (CMP) is a hybrid processing method in which the surface of a wafer is planarized by chemical and mechanical material removal. Since mechanical material removal in CMP is caused by the rolling or sliding of abrasive particles, interfacial friction during processing greatly influences the CMP results. In this paper, the trend of tribology research on CMP process is discussed. First, various friction force monitoring methods are introduced, and three elements in the CMP tribo-system are defined based on the material removal mechanism of the CMP process. Tribological studies on the CMP process include studies of interfacial friction due to changes in consumables such as slurry and polishing pad, modeling of material removal rate using contact mechanics, and stick-slip friction and scratches. The real area of contact (RCA) between the polishing pad and wafer also has a significant influence on the polishing result in the CMP process, and many researchers have studied RCA control and prediction. Despite the fact that the CMP process is a hybrid process using chemical reactions and mechanical material removal, tribological studies to date have yet to clarify the effects of chemical reactions on interfacial friction. In addition, it is necessary to clarify the relationship between the interface friction phenomenon and physical surface defects in CMP, and the cause of their occurrence.

그라비아 프린팅 공정에서 점탄성 잉크와 기판의 계면접착력 평가 (Evaluating Interfacial Force between Viscoelastic Ink and Substrate in Gravure Printing Process)

  • 유미림;안경현;이승종
    • Korean Chemical Engineering Research
    • /
    • 제53권1호
    • /
    • pp.111-115
    • /
    • 2015
  • 그라비아 프린팅 공정에서 고해상도의 패턴을 인쇄하기 위해서는 잉크가 기판으로 전사되는 양을 높이는 것이 중요하다. 일반적으로 잉크와 기판의 친화도가 높을수록 더 많은 양의 잉크를 전사시킬 수 있다. 하지만, 실제 산업에서 쓰이는 점탄성 잉크와 다양한 기판의 친화도를 정확히 평가하는 방법은 아직 제시된 바 없다. 본 연구에서는 점탄성 잉크와 다양한 기판의 계면 친화도를 실용적으로 평가할 수 있는 방안을 제시하고자 한다.