• Title/Summary/Keyword: Chemical Grouting

Search Result 63, Processing Time 0.021 seconds

Review of Pre-grouting Methods for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM 굴착 시 프리그라우팅 적용 사례 고찰)

  • Yoon, Youngmin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.528-546
    • /
    • 2018
  • Cases of TBM tunnelling have been consistently increasing worldwide. In many recent subsea and urban tunnelling projects, TBM excavation has been preferably considered due to its advantages over drill and blast tunnelling. Difficult ground conditions are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. Under the difficult ground conditions, ground reinforcement measures should be considered including grouting, while it is of great importance to select the optimal grout material and injection method to cope with the ground condition. The benefits from TBM excavation, such as fast excavation, increased safety, and reduced environmental impact, can be achieved by applying appropriate ground reinforcement with the minimum overrun of cost and time. In this report, various grouting methods were reviewed so that they can be applied in difficult ground conditions. In addition, domestic and international cases of successful ground reinforcement for difficult grounds were introduced for future reference.

Engineering Characteristic of High Density Expansion Materials for Structure Restoration Technology (기초침하복원을 위한 급속 팽창재료의 공학적 특성에 관한 연구)

  • Shin, Eun-Chul;Cha, Yong-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.1-5
    • /
    • 2008
  • The differential settlement on ordinary concrete buildings and paved roads are often occurred and which caused the failure of structure. The grouting method can be used for correcting the settlement of the structure. However, the grouting method has a disadvantage like that it takes a long time period to get a desired strength, and it is not a continuous in the phase of reinforced effect. In this paper, as an injecting material called GPCON to complement disadvantage, it is estimated about the characteristic that has a high-density expansion. With the changing of ground conditions and amount of injection, the change of physical strength on compression, the stability against chemical material are studied through the filming of SEM. The physical strength with compression is developed to high strength due to mixing with other material. It is not react with most of the material on chemical conditions except the component of alcohol. Through the SEM test. it is confirmed that the strength of material was increased as formation is being densified.

  • PDF

A New Groutability Criterion of Cement-based Grout with Consideration of Viscosity and Filtration Phenomenon (점도변화와 흡착현상을 고려한 시멘트계 그라우트재의 새로운 침투 기준)

  • Kim, Jong-Sun;Lee, In-Mo;Lee, Mun-Seon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.154-163
    • /
    • 2009
  • The groutability depends on the properties of the grout, its injection processes, and on the mechanical properties of the soil formation. During the process of pouring cement-based grouting into a porous medium, a variation with time occurs in the viscosity of grout suspension. In addition the particle filtration phenomenon will limit the expansion of the grouted zone because cement particles are progressively stagnant within the soil matrix. In this paper, a closed-form solution was derived by implementing the mass balance equations and the generalized phenomenological filtration law, which can be used to evaluate the deposition of cement-based grout in the soil matrix. The closed-form solution relevant to a particular spherical flow was modified by a step-wise numerical calculation, considering the variable viscosity caused by a chemical reaction, and the decrease in porosity resulting from grout particle deposition in the soil pores. A series of pilot-scale chamber injection tests was performed to verify that the developed step-wise numerical calculation is able to evaluate the injectable volume of grout and the deposition of grout particles. The results of the chamber injection tests concurred well with that of the step-wise numerical calculation. Based on the filtration phenomenon, a new groutability criterion of cement-based grout in a porous medium was proposed, which might facilitate a new insight in the design of the grouting process.

  • PDF

A Study on the Development and Characteristics of Eco-friendly None Alkaline Silica Sol Grouting Material (친환경 비알칼리성 실리카졸 지반주입재의 개발과 특성에 관한 연구)

  • Hyunsang Kang;Daeseouk Chung
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.747-756
    • /
    • 2023
  • Purpose: In this study, a grout material mixed using non-alkaline silica-based materials, which is an eco-friendly injection material to stabilize ground, is investigated to improve conventional problems. Method: The homogel specimens of Eco-Friendly Non-Alkaline Silica Sol (ENASS) and L.W. and S.G.R., representative silicate grouting are manufactured. Physicochemical and engineering properties of the specimens are evaluated in laboratory with uniaxial compression strength, hydraulic conductivity, shrinkage, chemical resistance, elution, fish poison, waste leaching. Result: Laboratory test results show that the ENASS was superior in all aspects compared to the existing injection matirial. The suitability of the grout material with ENASS is investigated with filed tests. Conclusion: The results of laboratory and field tests demonstrates that the grout material with ENASS is eco-friendly material that increases the strength, decreases the permeability, and discharges pollutants without leaching.

Research & Development of High Performance & Multi-Functional New Grouting Materials for Ground Improvement & Reinforcement (고성능 다기능 특수 그라우트 신재료 개발 및 기초지반보강재로의 사례 연구)

  • Park, Bong-Geun;Cho, Kook-Hwan;Na, Kyung;Yoon, Tae-Gook;Lee, Yong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.338-350
    • /
    • 2010
  • As existing materials for ground reinforcement, chemical grout material using cementitous materials and waterglass was used. But many problems in terms of ground reinforcement effects were implicated. In this study, for development and applicability verification of new materials, viscosity, fluidity, permeability, Self-Leveling, keeping of drilled hole, antiwashout underwater, resistance of water (groundwater dilution and minimize material eluting) and the early strength and long-term strength characteristics of developed materials was confirmed, and material standards, and establishing construction standards for the various model tests were conducted. As a result, high viscosity, flowability, permeability and keeping of drilled hole characteristics are excellent, in addition to the early strength properties, dilution does nat occur to groundwater, including groundwater is available for dealing with environmental issues. Application of basic and reinforcement method by Filler function in addition to structure can also or development of a new concept can be expected. In addition, middle and large-diameter drilled shaft, micropile, ground anchors, soil-nailing, steel pipes multi-grouting reinforcement for cement injection process could be used enough to even be considered.

  • PDF

A Study on the Infiltration Porperties of Cement Grout Material (시멘트계 주입재의 침투특성에 관한 실험적 연구)

  • 천병식;신동훈;이종욱;김진춘;이준우;안익균;이승범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.297-304
    • /
    • 2002
  • This study is about penetrability of Micro Cement(MC) used for ground improvement. In this study, the characteristics of chemical grouting such as solidification, penetrability were analyzed experimentally by changing permeability of ground, grain size and relative density of grout material. For evaluating applicability of grout material, solidification test and penetrability test were performed. From the results of the tests, effective solidification ratio and penetrability ratio of MC was each 75%, 86% to be excellent when ground permeability was in the range of 10$^{-2}$ and 10$^{-4}$ cm/sec. Otherwise, those of Ordinary Portland Cement(OPC) were both lower than 50% to be poor. When penetrability of grout material is needed for improvement of dam foundation and soft ground, application of MC Is much superior to that of the other materials. The results of the grouting tests in the water flowing ground show that solidification effect of long gel-time grout material is excellent as injection pressure increases when groundwater velocity is relatively low. But when groundwater velocity is relatively high, solidification effect of long gel-time grout material is very poor because most grout materials are outflowed. Therefore, as groundwater velocity is high, effective solidification ratio of long gel-time grout material is better than that of short gel-time grout material, also penetration distance of long gel-time grout material is longer than that of short gel-time grout material.

  • PDF

A Study on the Design Specification for Characteristics of Grout Materials - Focus on LW method and MSG method - (국내 그라우팅 재료별 특성에 따른 설계사양에 관한 연구 - LW 공법 및 MSG 공법을 중심으로 -)

  • Chun, Byung-Sik;Kim, Jin-Chun;Nam, Soon-Sung;Ha, Kwang-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.67-79
    • /
    • 2002
  • The purpose of this study is to present criteria of selection of optimum grout materials through analyzing the limitation of permeability of each materials(MSG-N, OPC), in various ground conditions by comparing presentation of strength and permeability of MSG method and LW method(or SGR method). To do that, physical and chemical characteristics of grout materials were analyzed and compressive tests of homogel, mixed coagulation materials and hardening materials in certain mixing ratio, and of milk paste. In addition, permeability tests for each ground soil, each injection pressure, and each materials in combined stratum were performed with massive chamber. The results of tests showed that ultra fine grout materials like grout of MSG is necessary to construct effective grouting in sand and silty sand ground. Also, it is expected to become chemical grouting guide data to layout construction engineers because presented proper injection pressure by kind of object ground in case using ultra-fine grout material.

  • PDF

Evaluation of Shallow Foundation Behavior on Basalt Rock Layers With Clinker and Sediment Layers Reinforced Using Cement Grouting (현무암층 사이에 존재하는 클링커층과 퇴적층의 시멘트 그라우팅 보강에 따른 얕은 기초 거동 평가)

  • Lee, Kicheol;Shin, Hyunkang;Jung, Hyuksang;Kim, Donghoon;Ryu, Yongsun;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.33-44
    • /
    • 2019
  • Clinker layer is a stratum structure distributed in volcanic area such as Jeju Island. The clinker layers were formed in between the repetitive action of eruption and solidification of lava flows. Since the clinker layer contains a large amount of voids accompanied by the lava gas ejection process, there is a possibility of inducing overall stability of the ground due to the low stiffness and strength of the clinker layer. Therefore, in this study, site investigation was carried out at both ends of the 00 bridge where the clinker layers exist. And, based on the ground survey results, the behavior of shallow foundations was analyzed numerically. In addition, the improved shallow foundation behavior in grouting substitution using the chemical injection method of the clinker layer was compared with the shallow foundation behavior in the ground, and the grouting substitution efficiency of each layer was analyzed. As a result, the bearing capacity, the replacement efficiency and elastic settlement were different according to the presence or absence of the sediment layer. This is because the sediment layer has a lower stiffness and density than the clinker layer.

The Characteristics of Shearing Resistance of Silicate-Grouted Soils (물유리계 약액고결토의 전단저항특성)

  • 정형식;류재일
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.45-55
    • /
    • 1988
  • Chemical grouting is one of the ground.improvement methods for the purpose of cutting o($\boxUl$ water and increasing the strength of soil. It has ben reported that the effect of strength increasement of groued roils is due to increase of cohesion. In this study, the effect of cohesion on the shearing resistance of grouted soil 9.as intr.estigated tall.ouch triaxial compression test. According to the result of this research, It is found that the improved cohesion increases rapidly up to the maximum value at a small strain and subsequent decrease of cohericn is due to the breaking of grout chemical at a larger strain.

  • PDF

The Influence of Grain Size of Sandy Soil on the Strength and Stiffness of Silicate-Grouted Soil. (사질토의 입경이 물유리계 약액주입권결토에 강도 및 강성에 미치는 영향)

  • Jeong, Hyeong-Sik;Cheon, Byeong-Sik;Ryu, Jae-Il
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.29-38
    • /
    • 1988
  • One of the main objectives of researches for the chemical grouting is to assess the changes in soil properties caused by injection of chemical grout. Especially the changes in the strength properties of soils, such as elastic modulus, shear modulus of ground due to injection of chemical grout has drawn our attention. Since the specific surface changes with variation in the grain size of sandy soil, the influence of grain size of sandy toil on the strength and stiffness of silicate-grouted soil was investicated in this study by earring out uniaxial and triaxial compression tests. It was found that the strength and stiffness of grouted soil increased as the grain size of sandy soil decreases, the possibility of estimating the strength of grouted soil was confirmed through the study of relationship between specific surface of sandy soil and the strength of chemical gel.

  • PDF