• 제목/요약/키워드: Chattering problems

검색결과 40건 처리시간 0.026초

Design of Enhanced Min-Max Control using Feedforward Control

  • Im, Yoon-Tae;Song, Seong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.312-315
    • /
    • 2003
  • This paper deals with robust control problems of linear systems with matched nonlinear uncertainties. In order to handle the uncertainties, a Lyapunov min-max control approach can usually be adopted. By the way, the min-max control input is required to be switched and provokes chattering phenomena which limit the practical implementation. The magnitude of switching control input which cause chattering is dependent on the size of uncertainties. In this paper, it is shown that the magnitude of the min-max control input can be made small using a well-known disturbance observer technique and only considers the disturbance observing errors. The chattering phenomena can be reduced as small as possible by selecting a high diturbance observer gain. The simulations show that the min-max control with a disturbance observer can reduce chattering phenomena much smaller and guarantee much better robust performance rather than the one without a disturbance observer.

  • PDF

Design of a Fuzzy-Sliding Mode Controller for a SCARA Robot to Reduce Chattering

  • Go, Seok-Jo;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.339-350
    • /
    • 2001
  • To overcome problems in tracking error related to the unmodeled dynamics in the high speed operation of industrial robots, many researchers have used sliding mode control, which is robust against parameter variations and payload changes. However, these algorithms cannot reduce the inherent chattering which is caused by excessive switching inputs around the sliding surface. This study proposes a fuzzy-sliding mode control algorithm to reduce the chattering of the sliding mode control by fuzzy rules within a pre-determined dead zone. Trajectory tracking simulations and experiments show that chattering can be reduced prominently by the fuzzy-sliding mode control algorithm compared to a sliding mode control with two dead zones, and the proposed control algorithm is robust to changes in payload. The proposed control algorithm is implemented to the SCARA (selected compliance articulated robot assembly) robot using a DSP (digital signal processor) for high speed calculations.

  • PDF

Design of Continuous Variable Structure Tracking Controller With Prescribed Performance for Brushless Direct Drive Drive Servo Motor

  • Lee, Jung-Hoon
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권1호
    • /
    • pp.58-66
    • /
    • 1998
  • A continuous, accurate, and robust variable structure tracking controller(CVSTC) is designed for brushless direct drive servo motors(BLDDSM). Although conventional variable structure controls can give the desired tracking performances, there exists an inevitable chattering problems in control input which is undesirable for direct drive systems. With the presented algorithm, not only the chattering problems are removed by using the efficient compensation of the disturbance observer, but also the prescribed tracking trajectory can be obtained using the sliding dynamics when an initial of the desired trajcetory is different from that of a BLDDSM. The design of the sliding mode tracking controller for the prescribed, accurate, and robust tracking performance without the chattering problem is given based on the results of the detailed stability analysis. The usefulness of the suggested algorithm is demonstrated through the computer simulation for a BLDDSM under load variations.

  • PDF

공간벡터 변조법을 적용한 BLDC 전동기에 대한 슬라이딩 모드 속도 제어기 설계 (Design of a Sliding Mode Speed Controller for the BLDC Motor Using the Space Vector Modulation Technique)

  • 최중경;박승엽;황정원
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1125-1128
    • /
    • 1999
  • This paper presents a speed controller for the Sinusoidal type BLDC motor using the sliding mode. Since the sliding mode control has some practical limitations such as the chattering phenomenon and reaching phase problems, the technique of overcoming these limitations is proposed in a practical realization. This proposed speed control technique is composed of an smooth integral variable structure control(IVSC), and chattering prediction method.

  • PDF

Chattering-Free Sliding Mode Control with a Time-Varying Sliding Surface

  • Kyung, Tai-Hyun;Kim, Jong-Shik;Lee, Kyu-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.151.4-151
    • /
    • 2001
  • Chattering-free sliding mode control is derived from the reaching law method and Lyapunov stability theorem. Its control input Is composed of continuous term and discontinuous term. By the combination of these terms, the robustness and tracking performance can be improved and the chattering can be avoided. But in the reaching mode, the sliding mode control is sensitive to the modeling uncertainties, parameter variations and disturbances, also it needs a large control input. These result in poor transient responses. In this paper, to overcome these problems in the reaching mode, a time-varying sliding surface is proposed. And it is applied to a 2-link SCARA robot manipulator, experimental results show that the transient response is improved and its ...

  • PDF

Q-Learning을 사용한 로봇팔의 SMCSPO 게인 튜닝 (Gain Tuning for SMCSPO of Robot Arm with Q-Learning)

  • 이진혁;김재형;이민철
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.221-229
    • /
    • 2022
  • Sliding mode control (SMC) is a robust control method to control a robot arm with nonlinear properties. A high switching gain of SMC causes chattering problems, although the SMC allows the adequate control performance by giving high switching gain, without the exact robot model containing nonlinear and uncertainty terms. In order to solve this problem, SMC with sliding perturbation observer (SMCSPO) has been researched, where the method can reduce the chattering by compensating the perturbation, which is estimated by the observer, and then choosing a lower switching control gain of SMC. However, optimal gain tuning is necessary to get a better tracking performance and reducing a chattering. This paper proposes a method that the Q-learning automatically tunes the control gains of SMCSPO with an iterative operation. In this tuning method, the rewards of reinforcement learning (RL) are set minus tracking errors of states, and the action of RL is a change of control gain to maximize rewards whenever the iteration number of movements increases. The simple motion test for a 7-DOF robot arm was simulated in MATLAB program to prove this RL tuning algorithm. The simulation showed that this method can automatically tune the control gains for SMCSPO.

연속 가변 구조 제어를 이용한 직류 전동기의 추적 제어 (A tracking control of DC servomotors using a continuous VSS control)

  • 이정훈;고종선;김종준;이주장;윤명준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.463-467
    • /
    • 1991
  • A continuous variable structure system control as a DC servomotor trackhig controller is proposed for the improvement of the chattering problems. The stability property of the proposed algorithms is analyzed. The prescribed trackfiig error is gauranteed in the existence of load variations based on the stability analysis.

  • PDF

기어 백래쉬로 인한 응답지연 및 추종오차 억제방안에 관한 연구 (A Study on Response Time Delay and Tracking Error Suppression Strategy in Gear Mechanism : Control System Design Approach)

  • 만손트란;최은호;김영복
    • 동력기계공학회지
    • /
    • 제21권4호
    • /
    • pp.77-83
    • /
    • 2017
  • The aim of this paper is to solve the chattering and delayed response problems caused by gear backlash. In the gear mechanism based systems, for example, in robot systems, the actuators provide the reduction gear with motors to transfer effectively electric power to mechanical power. Therefore, the gear backlash exists and is an unavoidable fact which makes many undesirable problems. In this paper, the authors try to make a solution for this issue and, introduce several control methods which are PID only, PID with Smith predictor and super-twisting algorithm based SMC(sliding mode control). Each control method is applied to the real plant in which strong backlash is included. By comparison results, it is clear that SMC gives the best control performance with little backlash effects. Also, the usefulness and effectiveness of proposed control method is verified by experiment.

리프팅 기법을 이용한 리플 제거 멀티레이트 제어기 설계 (Ripple Free Multirate Controller Design Using Lifting Technique)

  • 정동슬;조규남;정정주
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1040-1047
    • /
    • 2007
  • This paper presents ripple-free method that can occur in multirate controller design. The conventional multirate input controller has the problem that the ripple occurs in track-following because of chattering phenomenon in control input signal. In order to resolve the problem of rippling, it was proposed to eliminate the ripple phenomenon using feedforward compensator. This paper makes explains problems in conventional ripple-tree multirate controller and introduces a multirate controller design method applying lifting technique based on current estimators in condition space. Using the ripple-tree multirate controller, we show that chattering does not occur in the control input signal through applying the final value theorem from the viewpoint of discrete-time transformation. Also, this study proves that the ripple of the proposed controller decreases with the increase of this sampling frequency and, when sampling frequency is fixed, it decreases with the increase of the control input period.

Design of Sliding Mode Controller with Auto-tuning Method

  • He, Wei;Zhai, Yujia
    • 한국융합학회논문지
    • /
    • 제4권2호
    • /
    • pp.43-50
    • /
    • 2013
  • Sliding mode control(SMC) are carried out in this literature. And to make the controllers perform better, fuzzy logic was chosen,it makes PID controller auto-tuning parameters and reduced the chattering problem of sliding mode control. Since SMC take error and derivative of error as inputs, after comparison some results are obtained.PID controller response faster yet sliding mode control is much steadier. However certain problems cannot be ignored that the chattering phenomenal cannot be reduced entirely and this motion may hurt the machine; this project only considered a simple system, there is no guarantee PID can work as well as in this case for a much more complex system. MATLAB simulink was the main approach to obtain the performance of the two controllers: to observe the control output of the two controllers, electric circuit and special controllers are designed and tested in MATLAB.