• Title/Summary/Keyword: Chat GPT

Search Result 250, Processing Time 0.024 seconds

A Study on the Understanding and Effective Use of Generative Artificial Intelligence

  • Ju Hyun Jeon
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2023
  • This study would investigate the generative AIs currently in service in the era of hyperscale AIs and explore measures for the use of generative AIs, focusing on 'ChatGPT,' which has received attention as a leader of generative AIs. Among the various generative AIs, this study selected ChatGPT, which has rich application cases to conduct research, investigation, and use. This study investigated the concept, learning principle, and features of ChatGPT, identified the algorithm of conversational AI as one of the specific cases and checked how it is used. In addition, by comparing various cases of the application of conversational AIs such as Google's Bard and MS's NewBing, this study sought efficient ways to utilize them through the collected cases and conducted research on the limitations of conversational AI and precautions for its use. If connected to city-related databases, it can provide information on city infrastructure, transportation systems, and public services, so residents can easily get the information they need. We want to apply this research to enrich the lives of our citizens.

Evaluating the Current State of ChatGPT and Its Disruptive Potential: An Empirical Study of Korean Users

  • Jiwoong Choi;Jinsoo Park;Jihae Suh
    • Asia pacific journal of information systems
    • /
    • v.33 no.4
    • /
    • pp.1058-1092
    • /
    • 2023
  • This study investigates the perception and adoption of ChatGPT (a large language model (LLM)-based chatbot created by OpenAI) among Korean users and assesses its potential as the next disruptive innovation. Drawing on previous literature, the study proposes perceived intelligence and perceived anthropomorphism as key differentiating factors of ChatGPT from earlier AI-based chatbots. Four individual motives (i.e., perceived usefulness, ease of use, enjoyment, and trust) and two societal motives (social influence and AI anxiety) were identified as antecedents of ChatGPT acceptance. A survey was conducted within two Korean online communities related to artificial intelligence, the findings of which confirm that ChatGPT is being used for both utilitarian and hedonic purposes, and that perceived usefulness and enjoyment positively impact the behavioral intention to adopt the chatbot. However, unlike prior expectations, perceived ease-of-use was not shown to exert significant influence on behavioral intention. Moreover, trust was not found to be a significant influencer to behavioral intention, and while social influence played a substantial role in adoption intention and perceived usefulness, AI anxiety did not show a significant effect. The study confirmed that perceived intelligence and perceived anthropomorphism are constructs that influence the individual factors that influence behavioral intention to adopt and highlights the need for future research to deconstruct and explore the factors that make ChatGPT "enjoyable" and "easy to use" and to better understand its potential as a disruptive technology. Service developers and LLM providers are advised to design user-centric applications, focus on user-friendliness, acknowledge that building trust takes time, and recognize the role of social influence in adoption.

A Study on the Evaluation of LLM's Gameplay Capabilities in Interactive Text-Based Games (대화형 텍스트 기반 게임에서 LLM의 게임플레이 기능 평가에 관한 연구)

  • Dongcheul Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.87-94
    • /
    • 2024
  • We investigated the feasibility of utilizing Large Language Models (LLMs) to perform text-based games without training on game data in advance. We adopted ChatGPT-3.5 and its state-of-the-art, ChatGPT-4, as the systems that implemented LLM. In addition, we added the persistent memory feature proposed in this paper to ChatGPT-4 to create three game player agents. We used Zork, one of the most famous text-based games, to see if the agents could navigate through complex locations, gather information, and solve puzzles. The results showed that the agent with persistent memory had the widest range of exploration and the best score among the three agents. However, all three agents were limited in solving puzzles, indicating that LLM is vulnerable to problems that require multi-level reasoning. Nevertheless, the proposed agent was still able to visit 37.3% of the total locations and collect all the items in the locations it visited, demonstrating the potential of LLM.

An Exploratory Study of Success Factors for Generative AI Services: Utilizing Text Mining and ChatGPT (생성형AI 서비스의 성공요인에 대한 탐색적 연구: 텍스트 마이닝과 ChatGPT를 활용하여)

  • Ji Hoon Yang;Sung-Byung Yang;Sang-Hyeak Yoon
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.125-144
    • /
    • 2023
  • Generative Artificial Intelligence (AI) technology is gaining global attention as it can automatically generate sentences, images, and voices that humans previously generated. In particular, ChatGPT, a representative generative AI service, shows proactivity and accuracy differentiated from existing chatbot services, and the number of users is rapidly increasing in a short period of time. Despite this growing interest in generative AI services, most preceding studies are still in their infancy. Therefore, this study utilized LDA topic modeling and keyword network diagrams to derive success factors for generative AI services and to propose successful business strategies based on them. In addition, using ChatGPT, a new research methodology that complements the existing text-mining method, was presented. This study overcomes the limitations of previous research that relied on qualitative methods and makes academic and practical contributions to the future development of generative AI services.

Structural analysis and design using generative AI

  • Moonsu Park;Gyeongeun Bong;Jungro Kim;Gihwan Kim
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.393-401
    • /
    • 2024
  • This study explores the integration of the generative AI, specifically ChatGPT (GPT-4o), into the field of structural analysis and design using the finite element method (FEM). The research is conducted in two main parts: structural analysis and structural design. For structural analysis, two scenarios are examined: one where the FEM source code is provided to ChatGPT and one where it is not. The AI's ability to understand, process, and accurately perform finite element analysis in both scenarios is evaluated. Additionally, the application of ChatGPT in structural design is investigated, including design modifications and parameter sensitivity analysis. The results demonstrate the potential of the generative AI to assist in complex engineering tasks, suggesting a future where AI significantly enhances efficiency and innovation in structural engineering. However, the study also highlights the importance of ensuring the accuracy and reliability of AI-generated results, particularly in safety-critical applications.

Effective ChatGPT Prompts in Mathematical Problem Solving : Focusing on Quadratic Equations and Quadratic Functions (수학 문제 해결에서 효과적인 ChatGPT의 프롬프트 고찰: 이차방정식과 이차함수를 중심으로)

  • Oh, Se Jun
    • Communications of Mathematical Education
    • /
    • v.37 no.3
    • /
    • pp.545-567
    • /
    • 2023
  • This study investigates effective ChatGPT prompts for solving mathematical problems, focusing on the chapters of quadratic equations and quadratic functions. A structured prompt was designed, following a sequence of 'Role-Rule-Example Solution-Problem-Process'. In this study, an artificial intelligence model combining GPT-4, Wolfram plugin, and Advanced Data Analysis was utilized. Wolfram was used as the primary tool for calculations to reduce computational errors. When using the structured prompt, the accuracy rate for problems from nine high school mathematics textbooks on quadratic equations and quadratic functions was 91%, showing higher performance compared to zero-shot prompts. This confirmed the effectiveness of the structured prompts in solving mathematical problems. The structured prompts designed in this study can contribute to the development of intelligent information systems for personalized and customized education.

Leveraging LLMs for Corporate Data Analysis: Employee Turnover Prediction with ChatGPT (대형 언어 모델을 활용한 기업데이터 분석: ChatGPT를 활용한 직원 이직 예측)

  • Sungmin Kim;Jee Yong Chung
    • Knowledge Management Research
    • /
    • v.25 no.2
    • /
    • pp.19-47
    • /
    • 2024
  • Organizational ability to analyze and utilize data plays an important role in knowledge management and decision-making. This study aims to investigate the potential application of large language models in corporate data analysis. Focusing on the field of human resources, the research examines the data analysis capabilities of these models. Using the widely studied IBM HR dataset, the study reproduces machine learning-based employee turnover prediction analyses from previous research through ChatGPT and compares its predictive performance. Unlike past research methods that required advanced programming skills, ChatGPT-based machine learning data analysis, conducted through the analyst's natural language requests, offers the advantages of being much easier and faster. Moreover, its prediction accuracy was found to be competitive compared to previous studies. This suggests that large language models could serve as effective and practical alternatives in the field of corporate data analysis, which has traditionally demanded advanced programming capabilities. Furthermore, this approach is expected to contribute to the popularization of data analysis and the spread of data-driven decision-making (DDDM). The prompts used during the data analysis process and the program code generated by ChatGPT are also included in the appendix for verification, providing a foundation for future data analysis research using large language models.

Korean Ironic Expression Detector (한국어 반어 표현 탐지기)

  • Seung Ju Bang;Yo-Han Park;Jee Eun Kim;Kong Joo Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.3
    • /
    • pp.148-155
    • /
    • 2024
  • Despite the increasing importance of irony and sarcasm detection in the field of natural language processing, research on the Korean language is relatively scarce compared to other languages. This study aims to experiment with various models for irony detection in Korean text. The study conducted irony detection experiments using KoBERT, a BERT-based model, and ChatGPT. For KoBERT, two methods of additional training on sentiment data were applied (Transfer Learning and MultiTask Learning). Additionally, for ChatGPT, the Few-Shot Learning technique was applied by increasing the number of example sentences entered as prompts. The results of the experiments showed that the Transfer Learning and MultiTask Learning models, which were trained with additional sentiment data, outperformed the baseline model without additional sentiment data. On the other hand, ChatGPT exhibited significantly lower performance compared to KoBERT, and increasing the number of example sentences did not lead to a noticeable improvement in performance. In conclusion, this study suggests that a model based on KoBERT is more suitable for irony detection than ChatGPT, and it highlights the potential contribution of additional training on sentiment data to improve irony detection performance.