• 제목/요약/키워드: Chassis Part

검색결과 54건 처리시간 0.021초

튜브포밍공법을 이용한 후륜 현가부품의 개발 (Development of rear chassis part using tube forming process)

  • 박병철;권태우;이동화;서창희;김종철;김태준;이우식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.32-35
    • /
    • 2004
  • The development of automotive rear chassis part using tube forming process has advantage of increase in part durability and decrease in its weight. We developed tubular type rear CTBA(Coupled Torsion Beam Axle) part with 60K high strength steel developed by POSCO in this project. The result was demonstrated that tubular type CTBA shows excellent durability performance and $10\%$ weight reduction compared with V-beam type CTBA in our work. Furthermore, we will adapt this technology to mass production and apply to the other chassis parts.

  • PDF

특정점 측정에 근거한 도어 장착 로봇의 위치 보정 시스템 개발: Part II - 측정및 구현 (Development of position correction system of door mounting robot based on point measure: Part ll-Measurement and implementation)

  • 변성동;강희준;김상명
    • 한국정밀공학회지
    • /
    • 제13권3호
    • /
    • pp.42-48
    • /
    • 1996
  • In this paper, a position correction system of industrial robot for door-chassis assembly tast is developed in connection with the position correction algorithm shown in Part I. Tow notches and a hole of auto chassis are selected as the reference measure points and a vision based error detection algorithm is devised to measure in accuracy of less than 0.07mm. And also, the transformation between base and tool coordinates of the robot is shown to send the suitable correction quantities caaording to robot's option. The obtained algorithms were satisfactorily implemented for a real door-chassis model such that the system could accomplish visually acceptable door-chassis assembly task.

  • PDF

Boundary Condition for Bare Chassis Brackets of the Commercial Vehicle

  • Yang, Seung Bok
    • International journal of advanced smart convergence
    • /
    • 제11권1호
    • /
    • pp.94-100
    • /
    • 2022
  • It is common for commercial vehicles to make the top part according to the use after making the bear chassis, and to connect various devices with the bear chassis. Various brackets used in bear chassis for the development of all automobiles, including commercial vehicles, play a role of connecting the components required for driving and operating the car to the car body. In commercial vehicles, components necessary for operation are installed in the bear chassis; that is, the bear chassis of commercial vehicles is a space where the devices required for driving and operating the vehicle are installed. The devices required for the configuration of the vehicle are drive, brake, exhaust and steering, etc. These devices are basically connected to the body, the front axis, or the rear axis. The part interlinking the apparatuses required for the vehicle drive to the car body or axis is bracket. In this study, we analyzed the boundary conditions to evaluate the stability of the three brackets that connect the components of the car to the front axis of the new type of 30-seater bus in the development process. In order to analyze the boundary conditions, the boundary conditions according to the driving condition of the vehicle were classified. For stress analysis to evaluate the stability of brackets according to the driving state of the vehicle, it is reasonable to give the bracket a boundary condition of harsh conditions.

Safety Evaluate of Brackets for Bare Chassis of a 30-seated Bus

  • Choi, Wan-Mug
    • International journal of advanced smart convergence
    • /
    • 제11권3호
    • /
    • pp.215-221
    • /
    • 2022
  • In the manufacturing process of the bus treated as the commercial vehicle, after making the bare chassis which is the basic frame of the vehicle body, the part in which passengers ride is connected. In addition, the necessary parts such as the engine and transmission required for the operation of the bus are connected to the bare chassis. The element connecting the parts such as the boarding part of the passengers, the engine, the suspension and the transmission is the bracket. The device required for driving and operating the vehicle is mounted on the bare chassis using the bracket, which should ensure stability during bus operation. In this study, we were performed stress analysis to evaluate the stability of three types of brackets connecting the bare chassis of a new type of 30-seater bus in the development process and components required for driving and operation. The stress analysis should be preceded by the analysis of boundary conditions considering the loads applied to the brackets according to the material of the bracket to be analyzed and the driving type of the bus. The finite element model for structural analysis of brackets according to the driving type of the bus was used by Altair's Hypermesh 2017, and the solver used for structural analysis was Altair's Optistruct. The stress analysis was performed to present the safe and vulnerable parts of the three brackets.

이동 로봇 섀시 누전 모니터링 센서 개발 (Development of Leakage Current Sensor for Mobile Robot Chassis)

  • 김청월;권익현;김성득;이영태
    • 반도체디스플레이기술학회지
    • /
    • 제17권3호
    • /
    • pp.104-107
    • /
    • 2018
  • In this paper, we developed a sensor for monitoring the leakage current through the chassis of the robot. The leakage current sensor needs to be developed because it is a necessary part to prevent electric shock accidents that may occur through the chassis of a robot or an electric vehicle. This leakage monitoring sensor was developed to be mounted directly on the chassis of the robot. This sensor protects the control system from noise by discharging static and high-frequency noise that may occur in the chassis of the robot and monitors the leakage current by measuring the amount of current discharged through the ground. In this paper, a leakage monitoring sensor was developed with a simple structure using resistors, capacitors and OP-AMP, and the performance was evaluated.

자동차 범퍼 레일의 경량화 설계에 관한 연구 (Study on the design of the passenger cars bumper rail to reduce the weight)

  • 김이규;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.563-566
    • /
    • 2000
  • Recently vehicle development trend puts emphasis on cost reduction and performance improvement through weight reduction, and safety security to protect passenger and chassis against external impact. Primary factors effected on vehicle safety are chassis structure, chassis system, and safety equipment like bumper. Research in part of weight reduction is proceeding actively about prohibition of over-design and material through optimal design method. Bumper in these factors is demanded two of all factors, safety security and weight reduction. It is the part that prohibits or reduces a physical impact in low speed crash. Bumper is composed of a few parts but this study exhibits the shape of bumper rail has a role on energy absorption of safety security and weight reduction from structure analysis of bumper rail's variable shape surface.

  • PDF

고강도 열연강판의 경량 자동차 샤시부품 개발 (Application Technology of high strength hot-rolled steels for automotive lightweight chassis parts)

  • 김종철;권태우;전진화;손경선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.43-45
    • /
    • 2005
  • For application of advanced high strength hot-rolled steels (i.e. DP590, DP780) to automotive lightweight chassis parts, various technologies from design to forming test, optimization of welding condition and investigation of coating properties were tried. The target part of this study was automotive rear sub frame and we could make $16.8\%$ weight reduction by reducing the material thickness and optimizing the design. In addition, the formability and weldability of the newly developed AHSS, DP780, were evaluated.

  • PDF

샤시부품 동특성 해석을 위한 전차량 해석모델 개발에 관한 연구 (A Study on the Development of Vehicle Dynamic Model for Dynamic Characteristics Analysis of Chassis Parts)

  • 배철용;권성진;김찬중;이봉현;나병철
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.958-966
    • /
    • 2007
  • This study presents full vehicle dynamics model for the dynamic characteristic analysis of chassis parts which are suspension and brake system. This vehicle dynamics model is appled to kinematics and quasi-static analysis for each chassis part. In order to develop the vehicle dynamics model, the parameters of each chassis element part which are bush, spring and damper are measured by experiment. Also the wheel forces and moments of 6 DOF are measured at each wheel center. These data are applied to input parameter for vehicle dynamics model. And the verification of the developed model is achieved to comparison with the experimental force data of spring, trailing arm and assist arm by using the load response by strain gauge. These experimental force data are acquired by road test at event surfaces of P/G which are belgian and chuck holes roads.

전단-구조연계해석을 이용한 섀시부품 전단금형의 형상설계 (Shape Design of Shearing Die for the Chassis Part with the Coupled Analysis of Shear and Die Structure)

  • 김세호
    • 소성∙가공
    • /
    • 제31권5호
    • /
    • pp.261-266
    • /
    • 2022
  • To reduce the weight of the vehicle, the application of the high strength steel sheets to chassis parts is increased. High forming load is induced during the shearing process of steel chassis parts made of high strength steel, and the possibility of an eccentric load is increased depending on the product seating condition on the die, which decreases the stability and lifespan of the die. In this paper, a three-dimensional finite element analysis with the continuum element was conducted using the damage theory for the cam-trimming process of the front lower arm. The structural analysis of the trimming die was performed with the forming load result obtained from the analysis, and the amount of deflection and the stress distribution of the die during the shearing process were evaluated for the confirmation of the tool stability. The shape of the weak region of the die was modified according to structural analysis and then the stability was confirmed with the finite element analysis. The analysis result showed that the possibility of tool failure during cam-trimming process was remarkably reduced, and the reliability of the proposed modified design was validated.

자동차 쇽업소버의 피로해석에 관한 연구 (A Study on Fatigue Analysis of Automotive Shock Absorber)

  • 조재웅;한문식
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.92-97
    • /
    • 2008
  • The safety and the durability of the shock absorber as an automotive chassis part under the fatigue load can be predicted in this study. The fatigue life becomes constant from 0.5 to 0.75 at the change of load which is the amplitude load divided by average load. But its life is sharply decreased at the change of load from 0.75 to 1.5. The influence of fatigue life according to the change of load can be predicted by these results. As the value of maximum damage is 9.61 at the middle part of upper side on shock absorber under the concentrated load, there is the greatest possibility of destruction at this part. The spring of shock absorber becomes nearly the state of pure shear and the uniaxial or biaxial stress exists at the rest part of it under the fatigue load.