• Title/Summary/Keyword: Chassis Component

Search Result 30, Processing Time 0.024 seconds

Evaluation of chassis component reliability considering variation of fatigue data (피로 자료 분산을 고려한 자동차 부품의 신뢰도 해석)

  • Nam G.W;Lee B.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.690-693
    • /
    • 2005
  • In this paper, probabilistic distribution of fatigue life of chassis component is determined statistically by applying the design of experiments and the Pearson system. To construct $p-\varepsilon-N$ curve, the case that fatigue data are random variables is attempted. Probabilistic density function(p.d.f) for fatigue life is obtained by design of experiment and using this p.d.f fatigue reliability about any aimed fatigue life can be calculated. Lower control arm and rear torsion bar of chassis component are selected as examples for analysis. Component load histories, which are obtained by multi-body dynamic simulation for Belsian load history, are used. Finite element analysis are performed using commercial software MSC Nastran and fatigue analysis are performed using FE Fatigue. When strain-life curve itself is random variable, probability density function of fatigue life has very little difference from log-normal distribution. And the case of fatigue data are random variables, probability density functions are approximated to Beta distribution. Each p.d.f is verified by Monte-Carlo simulation.

  • PDF

Evaluation of Chassis Component Reliability Considering Variation of Fatigue Data (피로 자료 분산을 고려한 자동차 부품의 신뢰도 해석)

  • Nam, Gi-Won;Lee, Byung-Chai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.110-117
    • /
    • 2007
  • In this paper, probabilistic distribution of chassis component fatigue life is determined statistically by applying the design of experiments and the Pearson system. To construct p - ${\varepsilon}$ - N curve, the case that fatigue data are random variables is attempted. Probabilistic density function (p.d.f) for fatigue life is obtained by the design of experiment and using this p.d.f fatigue reliability, any aimed fatigue life can be calculated. Lower control arm and rear torsion bar of chassis components are selected as examples for analysis. Component load histories which are obtained by multi-body dynamic simulation for Belsian load history are used. Finite element analysis is performed by using commercial software MSC Nastran and fatigue analysis is performed by using FE Fatigue. When strain-life curve itself is random variable, the probability density function of fatigue life has very little difference from log-normal distribution. And the cases of fatigue data are random variables, probability density functions are approximated to Beta distribution. Each p.d.f is verified by Monte-Carlo simulation.

EVALUATION OF ROAD-INDUCED NOISE OF A VEHICLE USING EXPERIMENTAL APPROACH

  • Ko, K.-H.;Heo, J.-J.;Kook, H.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.21-30
    • /
    • 2003
  • In this paper a systematic test procedure for evaluation of road-induced noise of a vehicle and guidelines for each test are presented. Also, a practical application of the test procedure to a small SUV is presented. According to the test procedure, all the tests were performed to evaluate road-induced booming noise that is in low frequency range. First of all the information on characteristics of road-induced noise was obtained through baseline test. Coupling effects between body structure and acoustic cavity of a compartment were obtained by means of modal tests for a structure and an acoustic cavity. Local stiffness of joint areas between chassis system and car-body was determined by test for measurement of input point inertance. Noise sensitivities of body joints to operational forces were obtained through test for measurement of noise transfer functions. Operational deflection shapes made us analyze behaviors of chassis system under running condition and then find sources of noise due to resonance of the chassis system. Finally, Principal Component Analysis and Transfer Path Analysis were utilized to investigate main paths of road-induced noise. In order to evaluate road-induced booming noise exactly, all of tests mentioned above should be performed systematically.

Optimization for Component Noise Validation Test by Evaluation of Noise Control Factors for Suspension (현가장치 소음 발생인자 평가를 통한 부품소음 검증시험 최적화)

  • Son, Myungkoon;Lee, Taeyong;Lee, Sangbok;Lee, Seul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.344-349
    • /
    • 2017
  • Suspension noise from under a passenger car is one of the important factors that impact the perceptual quality for drivers. However, it is difficult to validate this by component level testing in the early stage of development, because suspension noise caused by interaction of the related parts has been found at saleable vehicles late during development or at the manufacturing stage, when many customers have already filed for claims. This study proposed a validation testing under research by the DFSS process that enables reproduction of vehicle level noise by component level testing using a shock absorber with the related parts, such as urethane bumper and top mount. This study also developed a compromised test matrix while analyzing the noise factors through experimental design and analysis of variance to determine what factors can affect noise. Based on this study, we expect that the vehicle level and customer claim can be validated during initial development timing by a more reliable component noise validation test.

Effect on Drive Point Dynamic Stiffness and Lightweight Chassis Component by using Topology and Topography Optimization (위상 및 형상 최적화기법에 의한 샤시부품의 국부동강성 및 경량화 효과)

  • Park, Jeong-hun;Jeon, Seung-tae;Lee, Tae-jin;Kang, Jeong-dae;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.141-147
    • /
    • 2018
  • Recently, interest in customers has shifted to the emotional quality of customers as the driving, handling, and collision stability of automobiles have been greatly improved. The NVH performance of a vehicle is quantified and evaluated from the DPDS. To improve the DPDS, we need to optimize the shape without considering the increases in thickness of the parts or additions to the parts. And at the same time, we need to establish design and analysis processes to satisfy the requirements of the DPDS.

Development of FCHEV Virtual Platform using Motor Model Based on Mathematical Formulation (수학적 모터 모델 기반 연료전지 자동차 가상 플랫폼 개발)

  • Kim, Sung-Soo;Park, Sangcheol;Choi, Jangyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.31-39
    • /
    • 2013
  • A virtual chassis platform for Fuel Cell Hybrid Electric Vehicles(FCHEV) has been developed, and a virtual platform similar to the actual system has been composed. In addition, major components such as a motor, fuel cell and battery for the virtual platform have been constructed by using a mathematical formulation. The FCHEV virtual platform using a detailed model based on the mathematical formula is capable of simulating various conditions according to changes of the control logic and component modules to evaluate performance, considering the vehicle dynamic characteristics. Usability of the mathematical model has been verified by comparative simulations according to the motor current control variation. In addition, reliability of the developed virtual chassis platform has been verified by simulating its fuel consumption with the UDDS(Urban Dynamometer Driving Schedule) FTP-72 velocity profile.

Wear Characteristics of Rubber-Seal for Inflow of Dust Particle in Automobile Chassis System PART I : Analysis of Dust Particle for Inflow in Automobile Chassis System (자동차 섀시 시스템에 유입되는 먼지입자에 의한 고무-시일 부품의 마멸특성 PART I : 자동차 섀시 시스템에 유입되는 먼지입자분석)

  • Lee, Young-Ze;Chung, Soon-Oh;Won, Tae-Yeong;Kim, Gi-Hoon;Kim, Dae-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.120-124
    • /
    • 2009
  • In automobile chassis system, several environmental factors weaken durability of automobile's components. The environmental factors are temperature, humidity, intensity of radiation and dust particle inflow. Especially, dust particle inflow leads to increase in friction and wear of automobile's components. The wear of automobile's component leads to increase in noise and exerts a bad influence on life of components. In this study, dust particles were investigated for study on the influence of dust particle inflow. Dust particles are collected on urban area, rural area and highway in China. The size of dust particle is analyzed using the image plus program, and the element of dust particle is analyzed using the SEM and EDX. The elements of dust particle are $SiO_2$ and $Al_{2}O_{3}$. The other elements(Na, Ca, Cl etc..) are detected on urban area and highway.

Wear Characteristics of Rubber-Seal for Inflow of Dust Particles in Automobile Chassis System -PART II: The Influence of Dust Particle Inflow on Wear Characteristics of Rubber-Seal- (자동차 섀시 시스템에 유입되는 먼지입자에 의한 고무-씨일 부품의 마멸특성 -PART II: 먼지유입에 따른 고무-씨일의 마멸특성-)

  • Lee, Young-Ze;Chung, Soon-Oh;Won, Tae-Yeong;Kim, Gi-Hoon;Kim, Dae-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.261-264
    • /
    • 2009
  • Environmental factors affect parts of the automobile. When dust particles are embedded, specially, friction and wear of the rubber-seal in automobile chassis system are increased. Increase in friction and wear leads to weakness of component and reduction of mechanical life. In this study, the wear characteristics of rubber-seal for inflow of dust particles are investigated. Silica($SiO_2$) and alumina($Al_2O_3$) particles are used as a dust particle because these particles are main elements of dust particles. The sliding wear tester are used for investigate the wear characteristics of rubber-seal. If the single dust particle($SiO_2$) is embedded in the rubber-seal component, the influence of dust particle size is more than that of inflow rate on the wear characteristics of rubber-seal. If the mixed dust particles are embedded in the rubber-seal component, the wear rate is increased as the rate of alumina that has a bigger hardness is increased. If the mixed dust particles that have different hardness are embedded in the rubber-seal component, the influence of particle size is more than that of particle hardness.

Study on the durability assessment based on CAE analysis (CAE 해석 기반 내구도 평가 방법에 대한 연구)

  • 주병현;남기원;이병채
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.844-848
    • /
    • 2004
  • We evaluate the durability of vehicle chassis component under dynamic loadings. Since the fatigue analysis of vehicle component is based on the dynamic load history it must be done by dynamic analysis. But in case the vehicle component has natural frequencies much larger than reversing frequencies of load history, we can get small analysis errors by applying quasi-static analysis. So it is inefficient that we apply to the dynamic analysis for all the vehicle components. In this research, we discuss the quasi-static analysis method which is appropriate for the fatigue analysis. And in case we can only perform the fatigue analysis based on dynamic analysis, we introduce more efficient method in the analysis time and hard disk storage.

  • PDF