• 제목/요약/키워드: Charpy impact

Search Result 243, Processing Time 0.027 seconds

Effect of Vanadium and Boron on Microstructure and Low Temperature Impact Toughness of Bainitic Steels (베이나이트강의 미세조직과 저온 충격 인성에 미치는 바나듐과 보론의 영향)

  • Huang, Yuanjiu;Lee, Hun;Cho, Sung Kyu;Seo, Jun Seok;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.139-149
    • /
    • 2021
  • In this study, three kinds of bainitic steels are fabricated by controlling the contents of vanadium and boron. High vanadium steel has a lot of carbides and nitrides, and so, during the cooling process, acicular ferrite is well formed. Carbides and nitrides develop fine grains by inhibiting grain growth. As a result, the low temperature Charpy absorbed energy of high vanadium steel is higher than that of low vanadium steel. In boron added steel, boron segregates at the prior austenite grain boundary, so that acicular ferrite formation occurs well during the cooling process. However, the granular bainite packet size of the boron added steel is larger than that of high vanadium steel because boron cannot effectively suppress grain growth. Therefore, the low temperature Charpy absorbed energy of the boron added steel is lower than that of the low vanadium steel. HAZ (heat affected zone) microstructure formation affects not only vanadium and boron but also the prior austenite grain size. In the HAZ specimen having large prior austenite grain size, acicular ferrite is formed inside the austenite, and granular bainite, bainitic ferrite, and martensite are also formed in a complex, resulting in a mixed acicular ferrite region with a high volume fraction. On the other hand, in the HAZ specimen having small prior austenite grain size, the volume fraction of the mixed acicular ferrite region is low because granular bainite and bainitic ferrite are coarse due to the large number of prior austenite grain boundaries.

Effect of notch shape and hardness ratio on characteristics of impact fracture in dual phase steels (複合組織鋼의 衝擊破壞特性에 미치는 노치形狀 및 硬度比의 영향)

  • 김정규;유승원;김일현
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.46-53
    • /
    • 1988
  • Effect of Notch Shape and Hardness Ratio on Characteristics of Impact Fracture in Dual Phase Steels. In this study, it is investigated the effect of notch shape and hardness ratio on the characteristics of impact fracture in dual phase steels. The impact test was carried out at the temperature range from -40.deg. C to room temperature with Instrumented Charpy Impact Tester. The main results obtained are as follows; 1, The maximum impact bending strength (.sigma.$_{max}$) increases with the tensile strength. Also, the impact energy depends on .sigma.$_{max}$. 2, In room temperature, the impact energy depends on crack-initiation energy (E$_{i}$) in case of the high hardness ratio (R=3.4), whereas depends on crack-propagation energy (E$_{p}$) in case of the low hardness ratio (R=1.8) and the dependence of crack-initiation energy of the impact characteristics decreases with increasing test temperature. These phenomena are result from the difficulty of cleavage facet formation.ion.ion.

  • PDF

Detemination of Dynamic Stress Intensity Factor of Brittle Materials under Impact Loading (충격하중을 받는 취성재료의 동적응력확대계수 결정)

  • 이억섭;이찬석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.381-386
    • /
    • 1993
  • This paper describes the dynamic fracture behavior of brittle materials under impact loading by using INSAMCR program with instrumented charpy test machine. To calculate the Dynamic Stress Intensity Factor The finite element analysis methods program, INSAMCR, was used. Dynamic fracture characteristic was researched to verify a relationship between Dynamic Stress Intensity Factor and crack tip propagation velocity in WC-6%Co. The relationship between Dynamic Stress Intensity Factor and crack tip velocity revealed typical .GAMMA. shape. INSAMCR was run to verify experimental results in WC-6%Co and shows a good coincidence.

  • PDF

Transition Temperature Evaluation of 1Cr-1Mo-0.25V Steel Using Miniaturized Charpy Impact Specimen (소형 샤르피 충격시험편을 이용한 1Cr-1Mo-0.25V강의 천이온도 평가)

  • Nahm Seung Hoon;Kim Si Cheon;Lee Hae Moo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.42-46
    • /
    • 1998
  • Miniaturized specimen technology Permits mechanical behavior to be determined using a minimum volume of material. The technology is useful in case of not collecting a large amount of materials from industrial equipments. Five kinds of accelerated degradation materials were prepared by isothermal aging heat treatment at $630^{\circ}C$. Three kinds of specimens were prepared for impact testing. In order to increase plastic constraint of subsize specimen, side-groove was introduced. Results between subsize and full size impact testing were compared. Size effects correlations were developed for the impact properties of turbine rotor material. These correlations successfully predict the ductile brittle transition temperature (DBTT) of full size Charpy impact specimens based on subsize specimen data.

  • PDF

Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels (알루미늄 첨가에 따른 오스테나이트계 Fe-23Mn-0.4C 고망간강의 극저온 충격 특성)

  • Kim, Sang-Gyu;Kim, Jae-Yoon;Yun, Tae-Hee;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.519-524
    • /
    • 2021
  • The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 ℃. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 ℃ and -196 ℃ exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.

Effect of Alloying Elements and Heat Treatment on the Microstructures and Mechanical Properties of Medium Carbon High Manganese Steels (중탄소 고망간강의 합금원소와 열처리 조건이 미세조직과 기계적 특성에 미치는 영향)

  • Lee, D.S.;Park, H.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.338-343
    • /
    • 2010
  • Mechanical properties and microstructures of medium carbon high manganese steels were investigated in terms of alloying elements such as Mn, C contents, and heat treatment condition. Austenite volume fraction was increased with increasing Mn content, leading to hardness decrease in the range of Mn content of above 10% after quenching and tempering. Such results are also supported by microstructural analysis and X-ray diffraction in that the increase in mangaese content results in the increase in austenite fraction. Studies on tempering condition indicated that not only hardness and tensile strength but also charpy impact values were reduced as tempering temperature were raised in the range of $250^{\circ}C$ to $600^{\circ}C$. It was also observed that fracture mode was changed from dimple to intergranular fracture. Such results are thought to be due to very fine carbide precipitation or impurity segreagation at grain boundaries as tempering temperature goes up. Heat treatment of Fe-5Mn-2Si-1Al-0.4C can be optimized by austenitizing at $850^{\circ}C$, air cooling and tempering at $250^{\circ}C$, resulting in 1950 MPa in Tensile strength, 17% in elongation and 23.3 $J/cm^2$ in charpy impact energy with high work hardening characteristics.

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan;Tanoglu, Metin;Aktas, Engin
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.113-123
    • /
    • 2019
  • In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.

Effect of Heat Treatment on Mechanical Properties of STD11 and STS3 (공구강의 열처리 조건에 빠른 기계적 성질)

  • 박지환;이종권;류근걸;이윤배
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.204-209
    • /
    • 2004
  • Using STD11 and STS3 as a mold set, accuracy of a mold product could be improved by heat treatment. Results of Charpy impact test and measurement of retained austenite in STS3 and STD11, STD11 was superior than STS3 in effect of sub-zero treatment and stability of working and measure. Decrease of retain austenite by sub-zero treatment in STS3 did not occured.

  • PDF

Statistical Evaluation of Fracture Characteristics of RPV Steels in the Ductile-Brittle Transition Temperature Region

  • Kang, Sung-Sik;Chi, Se-Hwan;Hong, Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.364-376
    • /
    • 1998
  • The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a $K_{IC}$ -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel (RPV) steel. Most of the fracture toughness data were within the 95% confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data.

  • PDF

A Study on the Fracture Stress in Miniaturized Charpy Impact Specimens (소형 샤르피 충격시험편에서의 파괴응력에 관한 연구)

  • Nahm, Seung-Hoon;Kim, Am-Kee;Lee, Dae-Yeol;Kim, Si-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.132-137
    • /
    • 2001
  • Miniaturized specimen technology is useful to characterize the mechanical behavior using a minimum volume of material, because it is almost impossible to sample the conventional specimen for the fracture toughness test without damage to equipment. Test material was 1Cr-1Mo-0.25V steel which was widely used for turbine rotor material. Two kinds of miniaturized impact specimens were prepared, i.e., miniaturized specimen with side groove and without side groove. The correlation between ductile brittle transition temperature(DBTT) of full size impact specimen and that of miniaturized impact specimen was made. The characteristics of miniaturized impact specimens technique as well as fracture stress were discussed. Finally, we concluded that the characteristics of fracture stress change on aging time were similar to that of DBTT.

  • PDF