• 제목/요약/키워드: Charpy Impact Energy

검색결과 130건 처리시간 0.025초

CF8M 주조 오스테나이트 스테인리스강의 열취화에 따른 재료물성치 평가 (Evaluation of Material Properties due to Thermal Embrittlement in CF8M Cast Austenitic Stainless Steel)

  • 김철;박흥배;진태은;정일석;석창성;박재실
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.131-136
    • /
    • 2003
  • CF8M cast austenitic stainless steel is used for several components such as primary coolant piping, elbow, pump casing, and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. In this study, three kinds of the aged CF8M specimen were prepared using an artificially simulated aging method. The objective of this study is to summarize the method of estimating ferrite contents, Charpy impact energy and J-R curve, and to evaluate the thermal embrittlement of the CF8M cast austenitic stainless steel piping used in the domestic nuclear power plants.

  • PDF

PWR 원전 주조 스테인리스강 배관의 열취화 평가 (Evaluation of Thermal Embrittlement for Cast Austenitic Stainless Steel Piping in PWR Nuclear Power Plants)

  • 김철;진태은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.96-101
    • /
    • 2004
  • Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal embrittlement at the reactor operating temperature. The objective of this study is to summarize the method of estimating ferrite content, Charpy impact energy and J-R curve and to evaluate the thermal embrittlement of the cast austenitic stainless steel piping used in the domestic nuclear power plants. The result of evaluation, two domestic nuclear power plants used CF-8M and CF-8A material has adequate fracture toughness after saturation.

  • PDF

複合組織鋼의 衝擊破壞特性에 미치는 노치形狀 및 硬度比의 영향 (Effect of notch shape and hardness ratio on characteristics of impact fracture in dual phase steels)

  • 김정규;유승원;김일현
    • 오토저널
    • /
    • 제10권2호
    • /
    • pp.46-53
    • /
    • 1988
  • Effect of Notch Shape and Hardness Ratio on Characteristics of Impact Fracture in Dual Phase Steels. In this study, it is investigated the effect of notch shape and hardness ratio on the characteristics of impact fracture in dual phase steels. The impact test was carried out at the temperature range from -40.deg. C to room temperature with Instrumented Charpy Impact Tester. The main results obtained are as follows; 1, The maximum impact bending strength (.sigma.$_{max}$) increases with the tensile strength. Also, the impact energy depends on .sigma.$_{max}$. 2, In room temperature, the impact energy depends on crack-initiation energy (E$_{i}$) in case of the high hardness ratio (R=3.4), whereas depends on crack-propagation energy (E$_{p}$) in case of the low hardness ratio (R=1.8) and the dependence of crack-initiation energy of the impact characteristics decreases with increasing test temperature. These phenomena are result from the difficulty of cleavage facet formation.ion.ion.

  • PDF

용접방법에 따른 구조용강 용접 접합부의 저온 충격인성 특성 (Effects of Welding Processes on the Low Temperature Impact Toughness of Structural Steel Welded Joints)

  • 이진형;신현섭;박기태
    • 한국강구조학회 논문집
    • /
    • 제24권6호
    • /
    • pp.693-700
    • /
    • 2012
  • 본 논문에서는 서로 다른 용접방법 및 용접재료를 사용하여 제작한 강구조물 용접부 및 열영향부에 대하여 샤르피 충격시험 (Charpy Impact Test) 및 조직검사를 통한 저온에서의 충격인성 평가를 실시하여, 극지 및 시베리아와 같은 저온환경에 노출된 강구조물 용접 접합부의 충격인성을 확보할 수 있는 용접방안에 대한 연구를 수행하였다. 사용된 용접방법은 강구조물 제작시 널리 쓰이는 SMAW (Shielded Metal Arc Welding)와 FCAW (Flux Cored Arc Welding)이며, 각 용접방법에 따른 저온강용 용접봉을 사용하여 시험판을 제작하였다. 서로 다른 용접방법으로 제작된 시험판의 용접부 및 열영향부에 대하여 샤르피 충격시험을 통한 저온에서의 충격흡수에너지 값과 미세조직 분석을 통하여 용접방법에 따른 구조용강 용접 접합부의 저온 충격인성을 평가하였다. 시험결과 극한지에 강구조물을 적용하기 위해서는 저입열 용접인 SMAW 용접방법 및 그에 따른 저온강용 용접봉을 사용하는 것이 충격인성 확보 측면에서 유리하다는 것을 알 수 있었다.

Statistical Evaluation of Fracture Characteristics of RPV Steels in the Ductile-Brittle Transition Temperature Region

  • Kang, Sung-Sik;Chi, Se-Hwan;Hong, Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.364-376
    • /
    • 1998
  • The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a $K_{IC}$ -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel (RPV) steel. Most of the fracture toughness data were within the 95% confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data.

  • PDF

제어압연한 베이나이트계 고강도강의 인장 및 충격 성질 (Tensile and Charpy Impact Properties of High-Strength Bainitic Steels Fabricated by Controlled Rolling Process)

  • 성효경;신상용;황병철;이창길;김낙준;이성학
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.615-624
    • /
    • 2010
  • This study is concerned with tensile and Charpy impact properties of high-strength bainitic steels fabricated by controlled rolling process. Six kinds of steels were fabricated by varying finish rolling temperature, start cooling temperature, and cooling rate, and their microstructures and tensile and Charpy impact properties were investigated. Their effective grain sizes were also characterized by the electron backscatter diffraction analysis. The microstructures of the steels rolled in the single phase region were most similar to those of the steels rolled in the two phase region. The steels cooled from $700{^{\circ}C}$ were composed mainly of granular bainites, while those cooled from $600{^{\circ}C}$ contained a number of bainitic ferrites, which resulted in the decrease in ductility and upper shelf energy in spite of the increase in strength. In the steels cooling from $600^{\circ}C$, fine acicular ferrites were well formed when the cooling rate was slow, which led to the best combination of high ductility, high upper shelf energy, and low energy transition temperature according to the decrease in the overall effective grain size due to the presence of acicular ferrites having smaller effective grain size.

베이나이트계 고강도강의 샤르피 충격 특성에 미치는 유효결정립도 영향 (Effect of Effective Grain Size on Charpy Impact Properties of High-Strength Bainitic Steels)

  • 신상용;한승엽;황병철;이창길;이성학
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.617-626
    • /
    • 2008
  • This study is concerned with the effect of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels. Six kinds of steels were fabricated by varying alloying elements and hot-rolling conditions, and their microstructures and tensile and Charpy impact properties were investigated. Their effective grain sizes were also characterized by the electron back-scatter diffraction analysis. The tensile test results indicated that the B- or Cu-containing steels had the higher yield and tensile strengths than the B- or Cu-free steels because their volume fractions of bainitic ferrite and martensite were quite high. The B- or Cu-free steels had the higher upper shelf energy than the B- or Cu-containing steels because of their higher volume fraction of granular bainite. In the steel containing 10 ppm B without Cu, the best combination of high strengths, high upper shelf energy, and low energy transition temperature could be obtained by the decrease in the overall effective grain size due to the presence of bainitic ferrite having smaller effective grain size.

해양플랜트용 500 MPa급 후판강의 모재 및 HAZ의 미세조직과 기계적 특성의 상관관계 (Correlation between Microstructure and Mechanical Properties of Base Metal and HAZ of 500 MPa Steel Plates for Offshore Platforms)

  • 박지원;조성규;조영욱;신건철;권용재;이정구;신상용
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.123-130
    • /
    • 2020
  • In this study, two types of thick steel plates are prepared by controlling carbon equivalent and nickel content, and their microstructures are analyzed. Tensile tests, Vickers hardness tests, and Charpy impact tests are conducted to investigate the correlation between microstructure and mechanical properties of the steels. The H steel, which has high carbon equivalent and nickel content, has lower volume fraction of granular bainite (GB) and smaller GB packet size than those of L steel, which has low carbon equivalent and nickel content. However, the volume fraction of secondary phases is higher in the H steel than in the L steel. As a result, the strength of the L steel is higher than that of the H steel, while the Charpy absorbed energy at -40 ℃ is higher than that of the L steel. The heat affected zone (HAZ) simulated H-H specimen has higher volume fraction of acicular ferrite (AF) and lower volume fraction of GB than the HAZ simulated L-H specimen. In addition, the grain size of AF and the packet sizes of GB and BF are smaller in the H-H specimen than in the L-H specimen. For this reason, the Charpy absorbed energy at -20 ℃ is higher for the H-H specimen than for the L-H specimen.

Nb 첨가에 따른 저탄소강의 충격 특성에 미치는 변태 온도의 영향 (Influence Nb Addition and Transformation Temperature on Impact Properties of Low-Carbon Steels)

  • 이상인;강준영;황병철
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.590-597
    • /
    • 2016
  • In this study, six kinds of low-carbon steel specimens with different ferrite-pearlite microstructures were fabricated by varying the Nb content and the transformation temperature. The microstructural factors of ferrite grain size, pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured based on optical and scanning electron micrographs; then, Charpy impact tests were conducted in order to investigate the correlation of the microstructural factors with the impact toughness and the ductile-brittle transition temperature (DBTT). The microstructural analysis results showed that the Nb4 specimens had ferrite grain size smaller than that of the Nb0 specimens due to the pinning effect resulting from the formation of carbonitrides. The pearlite interlamellar spacing and the cementite thickness also decreased as the transformation temperature decreased. The Charpy impact test results indicated that the impact-absorbed energy increased and the ductile-brittle transition temperature decreased with addition of Nb content and decreasing transformation temperature, although all specimens showed ductile-brittle transition behaviour.

API X80 라인파이프강의 미세조직과 기계적 특성에 미치는 냉각조건의 영향 (Effect of Cooling Conditions on Microstructures and Mechanical Properties in API X80 Linepipe Steels)

  • 한승엽;신상용;이성학;배진호;김기수
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.523-532
    • /
    • 2009
  • In this study, four API X80 linepipe steel specimens were fabricated with varying cooling rates and finish cooling temperatures, and their microstructures and crystallographic orientations were analyzed to investigate the effects of cooling conditions on their tensile and Charpy impact properties. All the specimens consisted of acicular ferrite, granular bainite, and secondary phases such as martensite and martensiteaustenite constituent. The volume fraction of secondary phases increased with increasing cooling rate, and the higher finish cooling temperature resulted in the reduction in volume fraction and grain size of secondary phases. According to the crystallographic orientation analysis data, the effective grain size and unit crack path decreased as fine acicular ferrites having a large amount of high-angle grain boundaries were homogeneously formed, thereby leading to the improvement of Charpy impact properties. The specimen fabricated with the higher cooling rate and lower finish cooling temperature had the highest upper shelf energy and the lowest energy transition temperature because it contained a large amount of fine secondary phases homogeneously distributed inside fine acicular ferrites, while its tensile properties well maintained.