• 제목/요약/키워드: Charging/Discharging Method

검색결과 143건 처리시간 0.031초

입자 군집 최적화를 이용한 전지전력저장시스템의 충·방전 운전계획에 관한 연구 (Study on BESS Charging and Discharging Scheduling Using Particle Swarm Optimization)

  • 박향아;김슬기;김응상;유정원;김성신
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.547-554
    • /
    • 2016
  • Analyze the customer daily load patterns, be used to determine the optimal charging and discharging schedule which can minimize the electrical charges through the battery energy storage system(BESS) installed in consumers is an object of this paper. BESS, which analyzes the load characteristics of customer and reduce the peak load, is essential for optimal charging and discharging scheduling to save electricity charges. This thesis proposes optimal charging and discharging scheduling method, using particle swarm optimization (PSO) and penalty function method, of BESS for reducing energy charge. Since PSO is a global optimization algorithm, best charging and discharging scheduling can be found effectively. In addition, penalty function method was combined with PSO in order to handle many constraint conditions. After analysing the load patterns of target BESS, PSO based on penalty function method was applied to get optimal charging and discharging schedule.

Design and Development of a Public Waste Battery Diagnostic Device

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제10권3호
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, design of an intuitive internal resistance diagnostic device is to diagnose the residual capacity and aging of the battery regardless of the model and the internal protocol of the waste battery through the method of measuring the internal resistance of a waste battery. In this paper, charging and discharging were continuously performed with 2A charging and 5A discharging in order to secure data on impedance changes that may occur in the charging and discharging process of various methods. As a result of the final experiment, it was confirmed that the impedance change occurred during charging and discharging, and the amount of change increased as the charging/discharging C-rate increased. In addition, it was confirmed that the waste battery aged or abnormal cell had a large change in the impedance value.

Charging and Discharging Characteristics of Electric Double Layer Capacitors used for a Storage Battery of Solar Energy

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권2호
    • /
    • pp.97-102
    • /
    • 2007
  • The charging/discharging characteristics of electric double layer capacitors (EDLCs) for an electric power storage device application were investigated. The specific area of the carbonaceous electrode surface by the BET method was in the range of $1800{\sim}2000\;m^2/g$. The charge distributions during charging and discharging were measured by means of a pulsed-electro-acoustic (PEA) method, and the voltage characteristics of EDLCs connected to solar cells were evaluated. The results showed that the distributions of positive and negative charges were spatially uneven, which was due to the mobility of the positive and negative charges in the carbonaceous electrode surface of the EDLCs. The charge accumulation region concentrated on central part of the carbonaceous electrode and the required times for charging and discharging were almost same.

NOVC형식 하이브리드 자동차의 최고 출력측정방법 연구 (A Study on Maximum Power Measurement Method for NOVC-type Hybrid Electric Vehicle)

  • 김주원;용기중
    • 자동차안전학회지
    • /
    • 제10권2호
    • /
    • pp.36-42
    • /
    • 2018
  • UNECE/WP29/GRPE/EVE has recently defined that the power of a hybrid electric vehicle is the system power. Although a method for measuring the maximum power of a hybrid electric vehicle is presented by KATRI, it does not consider charging and discharging characteristics of traction batteries. This study provides a maximum power measurement method which reflects the charging and discharging characteristics of traction batteries in NOVC-HEVs (Not Off Vehicle Charging-Hybrid Electric Vehicles). Both methods are compared with regard to the output measurement results.

배터리 충·방전용 3상 인터리브드 양방향 DC-DC 컨버터의 새로운 소프트 스위칭 방법 (New Soft-Switching Method of 3-phase Interleaved Bidirectional DC-DC Converter for Battery Charging and Discharging)

  • 정재헌;서보길;권창근;노의철;김인동;김흥근;전태원
    • 전력전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.383-390
    • /
    • 2014
  • This paper deals with novel soft-switching method for a bidirectional DC-DC converter in battery charging and discharging system. The proposed soft-switching method provides ZVS and ZCS at turn-on, and ZVS at turn-off of the switch in both charging and discharging operation modes. The soft switching condition can be obtained in wide load range, and provide low switching loss as well as low voltage spike at turn-off of the switch. Proposed method is analyzed in charging and discharging mode. Simulation and experimental results validate the usefulness of the proposed soft-switching method.

Energy Storage Characteristics In Fixed Beds (Charging, Storing, Discharging)

  • Hassanein, Soubhi A.;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.17-23
    • /
    • 2004
  • In the present work, the numerical model was refined to predict the thermal analysis of energy storage in a fixed beds during (charging ,storing, discharging) mode. The governing energy equations of both fluid and the solid particles along with their initial and boundary conditions are derived using a two-phase, one dimensional model. The refined model is carried out by taking into account change of (air density , air specific heat) with air temperature and also by taking into considerations heat losses from bed to surrounding. Finite difference method was used to obtain solution of two governing energy equations of both fluid and solid particles through a computer program especially constructed for this purpose. The temperature field for the air and the solid are obtained, also efficiency of energy stored inside the bed is computed. Finally using refined model the effect of air flow rate per unit area Ga (0.2, 0.3, and 0.4 kg/$m^2$-s), and inlet air temperature (200, 250, 300 $^{\circ}C$) on energy storage characteristics was studied in three mode ( charging ,storing, discharging). The rock particles of diameter 1 em is used as bed material in this research.

  • PDF

배터리 적용 기기의 커패시터 충방전 특성 (The charging and discharging specifications of the capacitor to the battery applied devices)

  • 김철진;홍성호;이수랑;김영태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1146-1148
    • /
    • 2007
  • This paper proposes a method to improve the charging speed and discharging performance of a high voltage capacitor used in a portable medical device. The improvement of the charging speed was achieved by duty cycle control. The discharging performance was carried out by varying the phase duration and the leading edge voltage of the output according to the transthoracic impdedance of the patient. As a result, the improvement in the charging speed and the performance of the discharging parameters shorten the patient treatment time.

  • PDF

A Study on the Charging and Diagnosis System of xEV Reusable Waste Battery

  • Park, Sung-Jun;Kim, Chun-Sung;Park, Seong-Mi
    • 한국산업융합학회 논문집
    • /
    • 제24권6_1호
    • /
    • pp.669-681
    • /
    • 2021
  • As the supply of xEV in Korea is rapidly increasing, the amount of waste batteries is expected to increase rapidly, but the current recycling system for waste xEV batteries is very insufficient. In order to properly utilize the xEV reusable battery module, it is essential to classify it into a type that has similar discharge characteristics to the current state of health(SOH), which is the discharge capacity of the battery. This paper proposes a system that can minimize the exchange of energy with the KEPCO system by using the charging/discharging method by circulating power between batteries in order to minimize the power consumption when charging and discharging waste batteries. In the proposed system, a function to measure parameters during the charging/discharging test of the waste battery was implemented to build a customized big date for the test waste battery. In addition, the dynamic characteristics of the proposed circuit were analyzed using PSIM, which is useful for power electronics analysis, and the validity of the proposed circuit was verified through experiments.

중대형 리튬폴리머 2차전지용 충방전기 개발 (Design of a cycler system for large capacity lithium-polymer battery)

  • 오동섭;오성업;이종윤;박민호;성세진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.82-86
    • /
    • 2004
  • In this paper, a cycler system for the Lithium-Polymer battery with the large capacity of 120Ah is presented. This system is constituted as the two units for the charging and discharging. The Lithium-Polymer battery should be charged in CC and CV mode, and it is required a very high precision control of the voltage and current for the charging unit. To decrease the switching noises and harmonics, parallel operation method is adopted and utilized in the power conversion module. The discharging unit has a link AC system function to return the discharging energy of battery to AC line and has comparatively less thermal loss. These units are designed to be controlled and monitored by personal computer. The total system for the battery charging and discharging is described and presented.

  • PDF

Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes of a Battery Energy Storage System

  • Xie, Bing;Wang, Jianze;Jin, Yu;Ji, Yanchao;Ma, Chong
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1211-1222
    • /
    • 2018
  • This study presents a power distribution control scheme for a three-phase interleaved parallel DC/DC converter in a battery energy storage system. To extend battery life and increase the power equalization rate, a control method based on the nth order of the state of charge (SoC) is proposed for the charging and discharging processes. In the discharging process, the battery sets with high SoC deliver more power, whereas those with low SoC deliver less power. Therefore, the SoC between each battery set gradually decreases. However, in the two-stage charging process, the battery sets with high SoC absorb less power, and thus, a power correction algorithm is proposed to prevent the power of each particular battery set from exceeding its rated power. In the simulation performed with MATLAB/Simulink, results show that the proposed scheme can rapidly and effectively control the power distribution of the battery sets in the charging and discharging processes.