• Title/Summary/Keyword: Charge Relaxation Time Constant

Search Result 14, Processing Time 0.026 seconds

A Study on Development of Miniature Size Surface Charge Electrostatic Induction Motor (소형표면전하유도형 정전모터의 개발을 위한 연구)

  • 이동훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.81-91
    • /
    • 1995
  • A miniature size electrostatic induction motor has been fabricated and studied with emphasis on the role of the surface resistivity, the relative dielectric constant of the rotor surface materials and the rotor liner materials, which control the charge induction and relaxation on the rotor surface and the field intensity between the rotor and the stator. It is found that the higher resitivity and/or the higher relative dielectric constant, concurrently the longer relaxation time constant of the rotor surface materials make the motor speed get higher speed. In case of discrete coated rotor surface it is found that the motor speed was increased logarithmically as narrow as width of the discrete coated Ti. And the degree of width of discrete coated Ti to the axial direction of the rotor was $60^{\circ}$ and $150^{\circ}$, the motor has got a 125% higher than that at the degree of $0^{\circ}$.

  • PDF

Surface Discharge Characteristics of a DC Corona Charged Ferroelectric Pellet Barrier (직류 코로나 하전된 강유전체구 층의 연면방전특성)

  • Geum, Sang-Taek;Lee, Geun-Taek;Mun, Jae-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.385-390
    • /
    • 1999
  • Surface corona discharge characteristics of a dc corona charged ferroelectric pellet barrier have been investigated experimentally. Electric charges stored on the surfaces of the ferroelectric pellets by a dc corona discharge provide partial electric fields on the surfaces of the ferroelectric pellets, which could generate surface corona discharges on the ferroelectric pellets. This system utilizes both the surface discharges on the ferroelectric pellet barrier and the corona discharge between corona tip and mesh electrode. Positive and negative dc voltages were applied to the tip to generate partial discharges, and corona currents were estimated to investigate the buildup charge on ferroelectric pellets as a function of the applied time and the charge relaxation time constants of ferroelectric pellets. As a result, in the case of the negative corona discharge with the ferroelectric pellet barrier, the mean corona current and ozone generation increase greatly, and the surface discharges on the ferroelectric pellets can be fenerated efficiently. It is also found that, charge relaxation time, dielectric constants offerroelectric pellets, polarity of applied voltage and applied time affected to the surface discharges among the ferroelectric pellets.

  • PDF

A New Type of Nonthermal Plasma Reactor

  • Geum, Sang-Taek;Moon, Jae-Duk;Jun, Sun-Gon
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.245-249
    • /
    • 1999
  • A new type of nonthermal plasma reactor utilizing ferroelectric pellets is proposed to generate nonthermal plasma efficiently, which is used for simultaneous control of various pollutant gases. Electric charges stored on ferroelctric pellets by corona discharge between a corona tip and a mesh electrode provide partial electrical discharges among ferroelectric pellets. These partial electrical discharges can enhance partial discharges around the surface of ferroelectric pellets. This method utilizes wide reacting area of ferroelectric pellets and partial discharge. Positive and negative dc voltage are applied to the corona tip to generate partial discharges, and corona currents are estimated to investigate charge storage on ferroelectric pellets as function of time and charge relaxation time constants of ferroelectric pellects. As a result, charge relaxationtime, dielectric constants of ferroelectric pellets, polarity of applied voltage and applied time influence partial discharges among ferroelectric pellect.

  • PDF

A Basic Study on Miniature Size Electrostatic Induction Meter (소형(小型) 정전(靜電) 유도형(誘導型) 모터의 기초(基礎) 연구(硏究))

  • Moon, Jae-Duk;Lee, Dong-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1993
  • A miniature size electrostatic induction motor has been fabricated and studied with emphasis on the role of the surface resistivity, the relative dielectric constant and the charge relaxation time constant of the rotor surface materials and the rotor liner materials, which, however, control the surface charge induction and relaxation on the rotor material surface and the field intensity between the rotor and the stator of the motor. It is found that the surface resistivity and/or the relative dielectric constant, and the charge relaxation time constant of the rotor surface material enfluenced significantly to motor speed controlled by the surface charge induction and relaxation on the rotor surface depending on the applied voltage and/or frequency changing. The resistivity of the rotor liner material is also found to be effected to the motor speed greatly by control of the field intensity between the rotor and the stator and of the surface charge distribution of the induced charge on the rotor. As a result, a maximum no load rotor speed of the motor tested was about 5500 rpm at the applied voltage of 4.5 kV and the frequency of 220 Hz for the case of the rotor surface material of $BaTiO_{3}$ 80% in the resin binder layered on the copper-foil rotor liner material.

  • PDF

The structural and dielectric polarization characteristics of composite oxide material in $(Ba Ca)TiO_3$-Zn (복합산화물 $(Ba Ca)TiO_3$-ZnO의 구조적 및 유전분극 특성)

  • 홍경진;임장섭;정우성;민용기;김용주;김태성
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.239-246
    • /
    • 1997
  • The ZnO is stabilize dielectric constant over a broad temperature range because its addition makes the relaxation time short. In this study, the composite oxide material (B $a_{0.85}$ $Ca_{0.15}$)Ti $O_{3}$ was mixed by ZnO additive material and the dielectric polarization characteristics was studied. The relative density was over 90[%] at all specimen in the structural characteristics. Among of the specimen, the relative density of (B $a_{0.85}$ $Ca_{0.15}$)Ti $O_{3}$ with ZnO (0.4mol) has a 95[%]. The grain size of composite oxide material with an increasing ZnO increased and it was 1.0[.mu.m]-1.22[.mu.m]. In the electrical characteristics, the charge and discharge current was increased by ZnO addition. The dielectric relaxation time was increased by space charge polarization at above 110[.deg. C] and the dielectric relaxation time was fixed by space charge polarization of para-dielectric layer at below 110[.deg. C]. The dielectric relaxation time was maximum when the grain size was small. The dielectric relaxation time is decreased with an additive material ZnO and interface polarization, existing void at the grain and grain boundary. The remnant polarization is increased and the coercive electric field is decreased by ZnO.

  • PDF

Characterization of Dielectric Relaxation and Reliability of High-k MIM Capacitor Under Constant Voltage Stress

  • Kwak, Ho-Young;Kwon, Sung-Kyu;Kwon, Hyuk-Min;Sung, Seung-Yong;Lim, Su;Kim, Choul-Young;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.543-548
    • /
    • 2014
  • In this paper, the dielectric relaxation and reliability of high capacitance density metal-insulator-metal (MIM) capacitors using $Al_2O_3-HfO_2-Al_2O_3$ and $SiO_2-HfO_2-SiO_2$ sandwiched structure under constant voltage stress (CVS) are characterized. These results indicate that although the multilayer MIM capacitor provides high capacitance density and low dissipation factor at room temperature, it induces greater dielectric relaxation level (in ppm). It is also shown that dielectric relaxation increases and leakage current decreases as functions of stress time under CVS, because of the charge trapping effect in the high-k dielectric.

The Comparison of Activation Protocols for PEMFC MEA with PtCo/C Catalyst (PtCo/C 촉매를 사용한 PEMFC MEA의 활성화 프로토콜 비교)

  • GISEONG LEE;HYEON SEUNG JUNG;JINHO HYUN;CHANHO PAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.178-186
    • /
    • 2023
  • Three activation methods (constant voltage, current cycling, and hydrogen pumping) were applied to investigate the effects on the performance of the membrane electrode assembly (MEA) loaded with PtCo/C catalyst. The current cycling protocol took the shortest time to activate the MEA, while the performance after activation was the worst among the all activation methods. The constant voltage method took a moderate activation time and exhibited the best performance after activation. The hydrogen pumping protocol took the longest time to activate the MEA with moderate performance after activation. According to the distribution of relaxation time analysis, the improved performance after the activation mainly comes from the decrease of charge transfer resistance rather than the ionic resistance in the cathode catalyst layer, which suggests that the existence of water on the electrode is the key factor for activation.

Solvent effect on the excited state of stilbene dendrimers bearing phenylacetylene groups

  • Nishimura, Yoshinobu;Arai, Tatsuo
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.85-87
    • /
    • 2014
  • We studied the characteristics of emissive state of the first (p-G1) and second (p-G2) generation of phenylacetylene dendrimers bearing stilbene as a core by using time-resolved fluorescence spectroscopy in cyclohexane (c-Hex) and N, N-dimethylformide (DMF), which are nonpolar and polar solvents, respectively. Time-dependent red-shift of emission spectra p-G2 both in c-Hex and DMF was observed in comparison with p-G1. Besides, the time constant of red-shift of spectra was found to be larger in DMF than in c-Hex. This indicates that the emissive state of p-G2 has a polar character in DMF as a result of charge delocalization from core to peripheral dendrons followed by stabilization of emissive state.

Electrostatic Electrification Relaxation Properties of Polyester Rayon Non-woven Fabric due to Weight Variation (중량변화에 의한 폴리에스터 레이온 부직포의 정전기 대전 완화특성)

  • Lee, Sung-Ill;Park, Yong-Soon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.12
    • /
    • pp.977-981
    • /
    • 2011
  • Non-wovens polyester rayon samples were manufactured, and the electrification properties of electrostatics were measured for three different samples (15 g/$m^2$, 25 g/$m^2$, and 40 g/$m^2$) with the environmental settings of temperature (20~40$^{\circ}C$) and humidity (40~90%). The conclusions are as follows. Heavy sample generated more static electricity when the temperature was constant. The static electricity decreased slowly when the humidity is less than 70%, while it sharply decreased over 70% humidity condition. For non-woven polyester rayon, static charge decreased as temperature and humidity increased. As the weight increased, less time were taken for the electrification voltage to drop to the half.

A Basic Study on Electrostatic Induction Motor (II) (정전(靜電) 유도형(誘導型)모터의 기초연구(基礎硏究)(II))

  • Moon, Jae-Duk;Lee, Dong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.699-702
    • /
    • 1992
  • A miniature size electrostatic induction motor have been constructed and studied by applying a three phase ac power source with a maximum voltage of 5 KV and a variable frequency ranged 0.0 - 150 Hz. A maximum no load speed of the motor tested was about 7600 RPM at the applied voltage of 4330 volt and the frequency of 130 Hz for the case of the rotor surface material of polyprophylene sheet screen-printed $TiO_2$ powder on it. It is found that there are 3 different regions of the motor operation, a rotor stop region, a stable operation region and a high speed abnormal region. And it is also found that the motor speed is influenced greatly by the charge relaxation time constant of the rotor surface materials, which however was changed by the means of vapour-deposited Ti or Ni and screen-printed $TiO_2$ powder on the surface of the rotor material, polyprophylene.

  • PDF