• Title/Summary/Keyword: Characteristic testing system

Search Result 177, Processing Time 0.027 seconds

Life Test Design and Evaluation of Inertial Measurement Unit for Guided Weapons (유도무기용 관성측정기 수명 시험 설계 및 평가)

  • Jo, Kyoung Hwan;Moon, Sang Chan;Yun, Suk Chang;Kwon, Seung Bok;Kim, Do Hyung;Yang, Il Young
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.94-101
    • /
    • 2022
  • In this paper, we have obtained the acceleration coefficient of the IMU (Inertial Measurement Unit) to prove reliability by analyzing the characteristic of the MEMS IMU installed in guided weapon systems for overseas export and the operating environment of the guided weapon system. Additionally, based on designed life testing, we performed life tests on three the IMUs and demonstrated a target lifetime of 12 years.

Design of Tester Apparatus for 48 Channel GM Tube Sensor (48개 채널의 GM Tube 센서 테스터 장치의 설계)

  • Lee, Hee-Yeol;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.310-313
    • /
    • 2016
  • In this paper, we propose the tester apparatus for 48 channel GM Tube sensor. The proposed apparatus can test up to 48 channel GM tube simultaneously to detect the defect and analyze the sensor characteristic. 300-1000V variable high voltage generation circuit is utilized for the apparatus suitable for the sensor characteristic. Thus, the proposed system is useful for various GM Tube sensor characteristic analysis. Multiple sensor testing environment is established for the early detection of the defect and the analysis to reduce the costs for manufacturing and rework. Developed 48 channel GM Tube sensor test is evaluated with certified testing equipment and shows excellent performance with respect to the uncertainty of the sensor test results.

Experimental Study of Evaluating Shoe Cushioning System Using Shock Absorption Pocket (신발의 보행 충격 완화 장치에 대한 충격 흡수력의 실험적 평가)

  • Sun Chang-Hwa;Son Kwon;Moon Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.241-248
    • /
    • 2006
  • Shoe cushioning systems are important to prevent body injuries. This study developed and evaluated a cushioning system to reduce impact force on the heel. The cushioning system suggested consist of a polyurethane pocket, which contains water and porous grains of open cell to dissipate the energy effectively. Load-displacement curves fer the shoe cushioning system were obtained from an instrumented testing machine and the results were compared with various pockets with air, water or grains. Mechanical testings showed that the pocket with 5g porous grain was the best for the cushioning system. This system can be applied to the design of various kind of sport shoes.

Vibration Characteristic Analysis using Acoustic Emission Signal (AE신호를 이용한 기어 정렬불량의 진동 특성 분석)

  • Gu, Dong-Sik;Kim, Byeong-Su;Lee, Jeong-Hwan;Yang, Bo-Suk;Choi, Byeong-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.43-48
    • /
    • 2008
  • Gear system has been widely used in industrial applications and unexpected failures of gears are not only extremely damaging but also lead to economic losses. So, early detection of fault is important for diagnosis machine condition. And acoustic emission is an efficient non destructive testing technique for the diagnosis of machine health and is useful technique for early detection of fault because it can find low-amplitude and high-frequency signal on account of high sensibility. Therefore, in this paper, the AE signal was measured and preprocessed using envelop analysis for gearbox with misalignment between pinion and gear. And then the vibration characteristic of gear misalignment was analyzed.

  • PDF

Analysis of Wear Debris on the Lubricated Machine Surface by the Neural Network (Neural Network에 의한 기계윤활면의 마멸분 해석)

  • 박흥식
    • Tribology and Lubricants
    • /
    • v.11 no.3
    • /
    • pp.24-30
    • /
    • 1995
  • This paper was undertaken to recognize the pattern of the wear debris by neural network as a link for the development of diagnosis system for movable condition of the lubricated machine surface. The wear test was carried out under different experimental conditions using the wear test device was made in laboratory and wear testing specimen of the pin-on-disk type were rubbed in paraffine series base oil, by varying applied load, sliding distance and mating material. The neural network has been used to pattern recognition of four parameter (diameter, elongation, complex and contrast) of the wear debris and learned the friction condition of five values (material 3, applied load 1, sliding distance 1). The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by the neural network. The characteristic parameter of the large wear debris over a few micron size enlarged recognition ability.

Vibration Characteristic Analysis Using Acoustic Emission Signal (AE신호를 이용한 기어 정렬불량의 진동 특성 분석)

  • Gu, Dong-Sik;Lee, Jeong-Hwan;Kim, Byeong-Su;Yang, Bo-Suk;Choi, Byeong-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1243-1249
    • /
    • 2008
  • Gear system has been widely used in industrial applications and unexpected failures of gears are not only extremely damaging but also leading to economic losses. So, early detection of fault is important for diagnosis machine condition. And acoustic emission is an efficient non-destructive testing technique fur the diagnosis of machine health and is useful technique far early detection of fault because it can find low-amplitude and high-frequency signal on account of high sensibility. Therefore, in this paper, the AE signal was measured and preprocessed using envelope analysis for gearbox with misalignment between pinion and gear. And then the gear misalignment's vibration characteristic were analyzed.

Experimental Study of Shoe Cushioning System of Shock Absorption Using Fluid Damper with Nano Particles (나노입자 유체댐퍼를 이용한 보행 충격 완화 장치의 충격 흡수에 대한 실험적 연구)

  • Moon B.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.2
    • /
    • pp.14-20
    • /
    • 2005
  • This study developed and evaluated a shoe cushioning system to reduce impact force patterns during running. The shoe cushioning system is composed with a poly urethane pocket, which contains water and porous grains to absorb the force against the weight inside the pocket. Load-displacement curves for the shoe cushioning system were obtained from an instrumented testing machine and the results were compared with various pockets that have air, water or grains. Mechanical testings showed that the pocket with 5 g particles was the best for the shoe cushioning system. This founding will be helpful to designing the shoe.

  • PDF

Development of Electrocardiogram Identification Algorithm for a Biometric System (생체 인식 시스템을 위한 심전도 개인인식 알고리즘 개발)

  • Lee, Sang-Joon;Kim, Jin-Kwon;Lee, Young-Bum;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.365-374
    • /
    • 2010
  • This paper is about the personal identification algorithm using an ECG that has been studied by a few researchers recently. Previously published algorithm can be classified as two methods. One is the method that analyzes ECG features and the other is the morphological analysis of ECG. The main characteristic of proposed algorithm uses together two methods. The algorithm consists of training and testing procedures. In training procedure, the features of all recognition objects' ECG were extracted and the PCA was performed for morphological analysis of ECG. In testing procedure, 6 candidate ECG's were chosen by morphological analysis and then the analysis of features among candidate ECG's was performed for final recognition. We choose 18 ECG files from MIT-BIH Normal Sinus Rhythm Database for estimating algorithm performance. The algorithm extracts 100 heartbeats from each ECG file, and use 40 heartbeats for training and 60 heartbeats for testing. The proposed algorithm shows clearly superior performance in all ECG data, amounting to 90.96% heartbeat recognition rate and 100% ECG recognition rate.

Study on bearing characteristic of rock mass with different structures: Physical modeling

  • Zhao, Zhenlong;Jing, Hongwen;Shi, Xinshuai;Yang, Lijun;Yin, Qian;Gao, Yuan
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.179-194
    • /
    • 2021
  • In this paper, to study the stability of surrounding rock during roadway excavation in different rock mass structures, the physical model test for roadway excavation process in three types of intact rock mass, layered rock mass and massive rock mass were carried out by using the self-developed two-dimensional simulation testing system of complex underground engineering. Firstly, based on the engineering background of a deep mine in eastern China, the similar materials of the most appropriate ratio in line with the similarity theory were tested, compared and determined. Then, the physical models of four different schemes with 1000 mm (height) × 1000 mm (length) × 250 mm (width) were constructed. Finally, the roadway excavation was carried out after applying boundary conditions to the physical model by the simulation testing system. The results indicate that the supporting effect of rockbolts has a great influence on the shallow surrounding rock, and the rock mass structure can affect the overall stability of the surrounding rock. Furthermore, the failure mechanism and bearing capacity of surrounding rock were further discussed from the comparison of stress evolution characteristics, distribution of stress arch, and failure modes in different schemes.

A Position Control System of SRM using Digital Hysteresis Controller (디지털 히스테리시스 제어기를 이용한 SRM의 위치제어시스템)

  • Baik Won-Sik;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Kim Min-Huei;Hwang Don-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.41-45
    • /
    • 2001
  • This paper presents an implementation of motion control system of Switched Reluctance Motor (SRM) using digital hysteresis controller by TMS320F240 DSP. SRM position control system possess several advantages over other motors, including high efficiency, simple structure, low cost, and four-quadrant operation at a wide speed range, especially for the servo drive systems with precision, stability and fast response characteristics in the industrial applications. In the suggested motion control system, position control using digital hysteresis controller is developed, and is evaluated using experimental testing. The developed system for cost reduction and high-performance by fully digital controller is shown a good response characteristic of motion control results.

  • PDF