• Title/Summary/Keyword: Characteristic simulator

Search Result 268, Processing Time 0.041 seconds

An Analysis of Running Stability of 1/5 Small Scaled Bogie on Small-Scaled Derailment Simulator (소형탈선시뮬레이터상에서의 1/5 축소대차 주행안정성 해석)

  • Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung;Song, Moon-Shuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1413-1420
    • /
    • 2012
  • To predict the dynamics behavior, running stability, etc. of a railway vehicle and to understand its physical characteristics, analytical methods are used for the testing and manufacturing of a scale model along with numerical simulations in developed countries (England, France, Japan, etc.). The test of the dynamics characteristics of full-scale models is problematic in that it is expensive and time-consuming because an entire large-scale test plant needs to be constructed, difficulties are involved in the test configuration, etc. To overcome these problems, an analytical study involving dynamics tests and computer simulations using a scaled bogie model that applies the laws of similarity was carried out. In this study, we performed stability analysis on a 1/5 small scaled bogie for parameters such as the running speed and carbody weight by using an analysis model. Furthermore, we verified the reliability by using a small-scaled derailment simulator and examined the dynamic characteristic of the 1/5 small scaled bogie.

Heat load characteristic analysis of conduction cooled 10kJ HTS SMES (전도 냉각형 10kJ 고온 초전도 에너지 저장장치의 열 부하 특성 해석)

  • Kim, Kwang-Min;Kim, A-Rong;Kim, Jin-Geun;Park, Hae-Yong;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Sim, Ki-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2219_2220
    • /
    • 2009
  • The characteristics of the Superconducting Magnetic Energy Storage (SMES) system are faster response, longer life time, more economical, and environment friendly than other Uninterruptible Power Supply (UPS) using battery. Fast charge and discharge time of SMES system can provide powerful performance of improving power quality in the grid. In order to demonstrate the effectiveness of SMES, the authors make a 10kJ SMES system for connection with RTDS (Real Time Digital Simulator). Because the characteristics of superconducting magnet are very important in SMES system, the necessary items such as thermal characteristic, mechanical stress and protection circuit should be considered. In this paper, the authors experimented thermal characteristics of the 10kJ SMES system. The experiment was accomplished using a simulation coils made of aluminium. It has same dimension of the 10kJ class HTS SMES coil. The coil was cooled with GM (Gifford -McMahon) cryocooler through the OFHC (Oxgen Free High thermal Conductivity) conduction bar. The test results of cool down and heat loads characteristics of the simulation coils are described in detail.

  • PDF

The novel NPLVTSCR ESD ProtectionCircuit without Latch-up Phenomenon for High-Speed I/O Interface (Latch-up을 방지한 고속 입출력 인터페이스용 새로운 구조의 NPLVTSCR ESD 보호회로)

  • Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.54-60
    • /
    • 2007
  • In this study novel ESD protection device, namely, N/P-type Low Voltage Triggered SCR, has been proposed, for high speed I/O interface. Proposed device could lower high trigger voltage($\sim$20V) of conventional SCR and reduce latch-up phenomenon of protection device during the normal condition. In this Study, the proposed NPLVTSCR has been simulated using TMA MEDICI device simulator for electrical characteristic. Also the proposed device's test pattern was fabricated using 90nm TSMC's CMOS process and was measured electrical characteristic and robustness. In the result, NPLVTSCR has 3.2V $\sim$ 7.5V trigger voltage and 2.3V $\sim$ 3.2V holding voltage by changing PMOS gate length and it has about 2kV, 7.5A HBM ESD robustness(IEC61000-4-2).

  • PDF

The Design of a Broadband E-plane H Sectoral Horn Phased Array Antenna Using Mutual Coupling (상호 결합을 이용한 광대역 E-면 H 섹터 혼 위상 배열 안테나 설계)

  • Lee, Cheol-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.620-628
    • /
    • 2007
  • An H-sector horn antenna has a constant beam coverage characteristic and it can be useful for application to a wide band phased array antenna system. In this paper, we designed a broadband E-plane H-sector horn phased-array antenna, which has a 3:1 bandwidth and ${\pm}60^{\circ}$ beam steering capability. An H-sector hem antenna was designed to have $30{\sim}50^{\circ}$ half-power beam width in the principal H-plane. The active reflection coefficient including mutual coupling was calculated using a waveguide simulator, and the active reflection characteristic was improved by mutual coupling over wide frequency range. Using these results, an $8{\times}1$ H-sector phased array antenna was fabricated. The measurement results for the half-power beam width in the principal H-plane and the active reflection coefficient showed a good agreement with the simulation results. The peak-value pattern in the steered radiation beams also agreed well with the active element pattern. The measured active reflection coefficients within the beam steering range are mostly less than 0.3 over the 3:1 frequency range.

Improvement of Track Tracking Performance Using Deep Learning-based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 항적 추적성능 향상에 관한 연구)

  • Hwang, Jin-Ha;Lee, Jong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.189-192
    • /
    • 2021
  • This study applies a deep learning-based long short-term memory(LSTM) model to track tracking technology. In the case of existing track tracking technology, the weight of constant velocity, constant acceleration, stiff turn, and circular(3D) flight is automatically changed when tracking track in real time using LMIPDA based on Kalman filter according to flight characteristics of an aircraft such as constant velocity, constant acceleration, stiff turn, and circular(3D) flight. In this process, it is necessary to improve performance of changing flight characteristic weight, because changing flight characteristics such as stiff turn flight during constant velocity flight could incur the loss of track and decreasing of the tracking performance. This study is for improving track tracking performance by predicting the change of flight characteristics in advance and changing flight characteristic weigh rapidly. To get this result, this study makes deep learning-based Long Short-Term Memory(LSTM) model study the plot and target of simulator applied with radar error model, and compares the flight tracking results of using Kalman filter with those of deep learning-based Long Short-Term memory(LSTM) model.

  • PDF

Design of Vertical Type MEMS Probe with Branch Springs (분기된 구조를 갖는 수직형 MEMS 프로브의 설계)

  • Ha, Jung-Rae;Kim, Jong-Min;Kim, Byung-Ki;Lee, June-Sang;Bae, Hyeon-Ju;Kim, Jung-Yup;Lee, Hak-Joo;Nah, Wan-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.831-841
    • /
    • 2010
  • The conventional vertical probe has the thin and long signal path that makes transfer characteristic of probe worse because of the S-shaped structure. So we propose the new vertical probe structure that has branch springs in the S-shaped probe. It makes closed loop when the probe mechanically connects to the electrode on a wafer. We fabricated the proposed vertical probe and measured the transfer characteristic and mechanical properties. Compared to the conventional S-shaped vertical probe, the proposed probe has the overdrive that is 1.2 times larger and the contact force that is 2.5 times larger. And we got the improved transfer characteristic by 1.4 dB in $0{\sim}10$ GHz. Also we developed the simulation model of the probe card by using full-wave simulator and the simulation result is correlated with measurement one. As a result of this simulation model, the cantilever probe and PCB have the worst transfer characteristic in the probe card.

A Study on the Analysis of Driver's Visual Behavior Characteristics according to the Type of Curve Radius (곡선반경 유형에 따른 운전자 시선특성분석)

  • Song, Byung-Kun;Lim, Joon-Bum;Lee, Soo-Beom;Park, Jin-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.117-126
    • /
    • 2012
  • Understanding driver's characteristic of visual activity is important process because driver depends on a visual signal more than 90% for getting outside information needed to drive, thus a series of driving, including perception, judgement, and activity, is completed. This study analyzes quantified driver's sight range in curved section where recognition of various information is critical due to biggest speed change among sections. Simulation is utilized for this study because of safety problem on field experiment and difficulties in using equipment. Building 6 roads that have different in curve radius by virtual driving map, experiment is carried out recruiting 30 people. Through analytical researches, it shows that drivers keep an eye on direction of driving, and driver's visual range is narrowed on left curve than right curve, and the more curve radius become small, the more drivers see in narrow angle.

Improving The Breakdown Characteristics of AlGaN/GaN HEMT by Optimizing The Gate Field Plate Structure (게이트 필드플레이트 구조 최적화를 통한 AlGaN/GaN HEMT 의 항복전압 특성 향상)

  • Son, Sung-Hun;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.1-5
    • /
    • 2011
  • In this paper, we optimize the gate field plate structure to improve breakdown characteristics of AlGaN/GaN HEMT by two-dimensional device simulator. We have simulated using three parameters such as field-plate length, types of insulator, and insulator thickness and thereby we checked change of the electric field distribution and breakdown voltage characteristics. As optimizing field-plate structure, electric fields concentrated near the gate edge and field-plate edge are effectively dispersed. Therefore, avalanche effect is decresed, so breakdown voltage characteristic is increased. As a result breakdown characteristics of optimized gate field-plate structure are increased by about 300% compared to those of the standard structure.

Linearization Technique for Bang-Bang Digital Phase Locked-Loop by Optimal Loop Gain Control (최적 루프 이득 제어에 의한 광대역 뱅뱅 디지털 위상 동기 루프 선형화 기법)

  • Hong, Jong-Phil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.90-96
    • /
    • 2014
  • This paper presents a practical linearization technique for a wide-band bang-bang digital phase locked-loop(BBDPLL) by selecting optimal loop gains. In this paper, limitation of the theoretical design method for BBDPLL is explained, and introduced how to implement practical BBDPLLs with CMOS process. In the proposed BBDPLL, the limited cycle noise is removed by reducing the proportional gain while increasing the integer array and dither gain. Comparing to the conventional BBDPLL, the proposed one shows a small area, low power, linear characteristic. Moreover, the proposed design technique can control a loop bandwidth of the BBDPLL. Performance of the proposed BBDPLL is verified using CppSim simulator.

Characteristic of fuel Cell DC-AC Inverter Using New Active Clamping Method (새로운 능동 클램핑방식을 이용한 연료전지용 DC-AC 인버터의 특성)

  • Kim, C.Y.;Cho, M.C.;Mun, S.P.;Kim, Y.J.;Nakaoka, Mutsuo;Kim, H.S.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.337-340
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V], In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch S5 and S6 in the secondary switch, which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household.

  • PDF