• 제목/요약/키워드: Characteristic equation

검색결과 949건 처리시간 0.024초

AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV EQUATIONS

  • OHM, MI RAY;SHIN, JUN YONG
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.257-270
    • /
    • 2018
  • An extrapolated Crank-Nicolson characteristic finite element method is introduced for approximate solutions of nonlinear Sobolev equations with a convection term. And we obtain the higher order of convergence for approximate solutions in the temporal and the spatial directions with respect to $L^2$ norm.

비정질 실리코 박막 트랜지스터 히스테리시스 특성의 수학적인 모델 (Mathematical Modeling of Hysteresis Characteristics of a-Si:H TFT)

  • Lee, Woo-Sun;Kim, Byung-In
    • 대한전기학회논문지
    • /
    • 제43권7호
    • /
    • pp.1135-1143
    • /
    • 1994
  • We fabricate a bottom gate a-Si:H TFT on N-Type <100> Si wafer. According to the Variation of gate and drain voltage, the hysteresis characteristic curves were measured experimentally. Also, we proposed model equation and showed that the model predict the hysteresis characteristic successfully. Drain current on the hysteresis characteristic curve showed an exponential variation. Hysteresis area of TFT increased with the drain voltage increase and decreases with the drain voltage decrease.

  • PDF

Derivation of the Foschini and Shepp's Joint-Characteristic Function for the First-and Second-Order Polarization-Mode-Dispersion Vectors Using the Fokker-Planck Method

  • Lee, Jae-Seung
    • Journal of the Optical Society of Korea
    • /
    • 제12권4호
    • /
    • pp.240-243
    • /
    • 2008
  • Using the well-known Fokker-Planck method, this paper presents a standard way to find the joint-characteristic function for the first- and second-order polarization-mode-dispersion vectors originally derived by Foschini and Shepp. Compared with the Foschini and Shepp's approach, the Fokker-Planck approach gives a more accurate and straightforward way to find the joint-characteristic function.

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian Method

  • Seo, Il-Won;Kim, Dae-Geun
    • Korean Journal of Hydrosciences
    • /
    • 제6권
    • /
    • pp.51-66
    • /
    • 1995
  • Various Eulerian-Lagerangian numerical models for the one-dimensional longtudinal dispersion equation are studied comparatively. In the models studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing advection and the other dispersion. The advection equation has been solved using the method of characteristics following flud particles along the characteristic line and the result are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpo;ation po;ynomials are superor to Lagrange interpolation polynomials in reducing both dissipation and dispersion errors.

  • PDF

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION

  • Lee, Hyun Geun;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권1호
    • /
    • pp.27-41
    • /
    • 2014
  • In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.

액성한계상태를 이용한 흙-수분 특성곡선의 평가 (Estimation of Generalized Soil-Water Characteristic Curves Using Liquid Limit State)

  • 성상규;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.146-153
    • /
    • 2004
  • The goals of this study are to investigate the feasibility of the reference state approach in determining the generalized soil-water characteristic curve that is essential for characterization of unsaturated soil behavior. The soil-water characteristic curves are obtained from a number of specimens of fine-grained residual soils compacted with different void ratios. Based on the experimental test results, the feasibility of using the liquid limit state as the reference state for predicting the soil-water characteristic curve are verified. Finally, through the regression analysis of experimental data using the equation of Fredlund and Xing (1994), a reliable method is proposed to predict the generalized soil-water characteristic curve of fine-grained residual soils using the liquid limit state as the reference.

  • PDF

유압 제어계에서 서보밸브 선형화 방정식의 오차 평가 (Error Evaluation of Linearized Equation for a Servovalve in Hydraulic Control Systems)

  • 김태형;이일영
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.779-788
    • /
    • 2003
  • This study evaluates the approximation errors of the existing linearized equation for a servovalve nonlinear flowrate characteristic. At first, the errors are evaluated on flowrate/pressure characteristics diagrams. Subsequently, they are investigated with time response simulation results for several hydraulic control systems. To enable systematic evaluation of computational error, the authors propose three kinds of equations with restructured forms of the existing linearized equation. As results of the evaluations, it is ascertained that comparatively good computational accuracy can be achieved with the existing linearized equation when both an operating point for the linearized equation and operating range of the hydraulic system stay near the flowrate axis of the flowrate/pressure characteristics diagram. In addition, the results show that comparatively big computational error may occur when operating range of a hydraulic system stay apart from the flowrate axis of the flowrate/pressure characteristics diagram.

Tracking Control of Robotic Manipulators based on the All-Coefficient Adaptive Control Method

  • Lei Yong-Jun;Wu Hong-Xin
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.139-145
    • /
    • 2006
  • A multi-variable Golden-Section adaptive controller is proposed for the tracking control of robotic manipulators with unknown dynamics. With a small sample time, the unknown dynamics of the robotic manipulator are denoted equivalently by a characteristic model of a 2-order multivariable time-varying difference equation. The coefficients of the characteristic model change slowly with time and some of their valuable characteristic relationships emerge. Based on the characteristic model, an adaptive algorithm with a simple form for the control of robotic manipulators is presented, which combines the multi-variable Golden-Section adaptive control law with the weighted least squares estimation method. Moreover, a compensation neural network law is incorporated into the designed controller to reduce the influence of the coefficients estimation error on the control performance. The results of the simulations indicate that the developed control scheme is effective in robotic manipulator control.

가시화를 위한 단면곡선, 반사성질선, 점근선 생성 기법 (Computation of Section Curves, Reflection Characteristic Lines, and Asymptotic Curves for Visualization)

  • 남종호
    • 한국CDE학회논문집
    • /
    • 제8권4호
    • /
    • pp.262-269
    • /
    • 2003
  • An approach to compute characteristic curves such as section curves, reflection characteristic lines, and asymptotic curves on a surface is introduced. Each problem is formulated as a surface-plane inter-section problem. A single-valued function that represents the characteristics of a problem constructs a property surface on parametric space. Using a contouring algorithm, the property surface is intersected with a horizontal plane. The solution of the intersection yields a series of points which are mapped into object space to become characteristic curves. The approach proposed in this paper eliminates the use of traditional searching methods or non-linear differential equation solvers. Since the contouring algorithm has been known to be very robust and rapid, most of the problems are solved efficiently in realtime for the purpose of visualization. This approach can be extended to any geometric problem, if used with an appropriate formulation.