• Title/Summary/Keyword: Characteristic Curves

Search Result 665, Processing Time 0.024 seconds

A Study on the Effects of the Coefficient of Uniformity and Porosity on the Soil-Water Characteristic Curves of Sandy Soils (사질토의 함수특성곡선에 대한 균등계수와 공극율의 영향에 관한 연구)

  • Yoo, Kunsun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.41-47
    • /
    • 2013
  • Well-graded and dense soils have good engineering properties. Unsaturated soil properties such as shear strength, compressibility and permeability are closely related to the soil-water characteristic curve of the soil. Therefore it is important to study the effects of the coefficient of uniformity and the porosity on the soil-water characteristic curve of the sandy soils, which are also related to the grain size distribution and the density of the soil, respectively. In this study soil-water characteristic curves (SWCCs) for six sandy soil specimens were investigated using Tempe pressure cells. The test data were best-fitted to Fredlund and Xing equation. The obtained fitting parameters and the characteristic points of SWCCs were discussed and correlated with the porosity and the coefficient of uniformity of the specimens. The results show that the smaller the porosity of the specimen becomes, the larger the value of the residual matric suction becomes, whereas the larger the coefficient of uniformity of the specimen becomes, the larger the value of the residual matric suction becomes. Regardless of the coefficient of uniformity, the smaller the porosity of the specimen, the flatter the max. slope of SWCC.

Envelope Generation for Freeform Objects (자유 곡면체의 엔벨롭 생성)

  • 송수창;김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.89-100
    • /
    • 2001
  • Swept volume is the sweeping region of moving objects. It is used in various applications such as interference detection in assembly design, visualization of manipulator motions in robotics, simulation of the volume removal by a cutter in NC machining. The shape of swept volume is defined by the envelope, which is determined by the boundary of moving objects and its direction of motion. In order to implement the generation of swept volume, researchers have taken much effort to develop the techniques how to generate the envelope. However, their results are confined to envelope generated only in simple shape objects, such as polyhedra or quadric surfaces. This study provided the envelope generation algorithm of NURBS objects. Characteristic points were obtained by applying the geometric conditions of envelope to NURBS equations, and then characteristic curves were created by means of interpolating those points. Silhouette edges were determined in the following procedures. First, two adjacent surfaces which have the same edge were found from B-Rep data. Then, by taking the scalar product of velocity vector of a point on that edge with each normal vector on two surfaces, silhouette edges were discriminated. Finally, envelope was generated along moving direction in the form of ruled surfaces by using both the partial information between initial and final position of objects affecting envelope along with characteristic curves and silhouette edge. Since this developed algorithm can be applied not only to NURBS objects but also to their Boolean objects, it can be used effectively in various applications.

  • PDF

Predicting soil-water characteristic curves of expansive soils relying on correlations

  • Ahmed M. Al-Mahbashi;Muawia Dafalla;Mosleh Al-Shamrani
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.625-633
    • /
    • 2023
  • The volume changes associated with moisture or suction variation in expansive soils are of geotechnical and geoenvironmental design concern. These changes can impact the performance of infrastructure projects and lightweight structures. Assessment of unsaturated function for these materials leads to better interpretation and understanding, as well as providing accurate and economic design. In this study, expansive soils from different regions of Saudi Arabia were studied for their basic properties including gradation, plasticity and shrinkage, swelling, and consolidation characteristics. The unsaturated soil functions of saturated water content, air-entry values, and residual states were determined by conducting the tests for the entire soil water characteristic curves (SWCC) using different techniques. An attempt has been made to provide a prediction model for unsaturated properties based on the basic properties of these soils. Once the profile of SWCC has been predicted the time and cost for many tests can be saved. These predictions can be utilized in practice for the application of unsaturated soil mechanics on geotechnical and geoenvironmental projects.

The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air

  • Kim, Ji-Ho;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.386-397
    • /
    • 2012
  • The stability and structure of bluff-body stabilized hydrogen flames were investigated numerically and experimentally. The velocity of coflowing air was varied from subsonic velocity to a supersonic velocity of Mach 1.8. OH PLIF images and Schlieren images were used for analysis. Flame regimes were used to classify the characteristic flame modes according to the variation of the fuel-air velocity ratio, into jet-like flame, central-jet-dominated flame, and recirculation zone flame. Stability curves were drawn to find the blowout regimes and to show the improvement in flame stability with increasing lip thickness of the fuel tube, which acts as a bluff-body. These curves collapse to a single line when the blowout curves are normalized by the size of the bluff-body. The variation of flame length with the increase in air flow rate was also investigated. In the subsonic coflow condition, the flame length decreased significantly, but in the supersonic coflow condition, the flame length increased slowly and finally reached a near-constant value. This phenomenon is attributed to the air-entrainment of subsonic flow and the compressibility effect of supersonic flow. The closed-tip recirculation zone flames in supersonic coflow had a reacting core in the partially premixed zone, where the fuel jet lost its momentum due to the high-pressure zone and followed the recirculation zone; this behavior resulted in the long characteristic time for the fuel-air mixing.

An Evaluation of Probabilistic Strain-Life Curve in Polyacetal (폴리아세탈 소재의 확률론적 변형률-수명선도 평가)

  • Jang, Cheon-Soo;Kim, Chul-Su;Park, Bum-Gyu;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1417-1424
    • /
    • 2006
  • In order to evaluate variation of fatigue life of mechanical components including engineering plastics, it is important to estimate probabilistic strain-life curves to accurately define the variation of fatigue characteristics. This paper intends to provide new assessment of P-$\varepsilon$-N (probabilistic strain-life curves) for considering the variation of fatigue characteristics in polyacetal. The fatigue strain controlled tests were conducted under constant 50% humidity and room temperature condition by a universal testing machine at strain ratio, R=0. A practical procedure is introduced to evaluate probabilistic strain-life curves. Three probabilistic distributions were used for generating P-$\varepsilon$-N curves such as normal, 2-parameter and 3-parameter Weibull. In this study, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probability distributions of the fatigue characteristic were examined using chi-square and Kolmogorov-Smirnov test. The more appropriate P-$\varepsilon$-N curves for these materials are generated by the proposed method considering 3-parameter Weibull distribution.

A Study on Estimation of the Delivery Ratio by Flow Duration in a Small-Scale Test Bed for Managing TMDL in Nakdong River (낙동강수계 수질오염총량관리를 위한 시범소유역 유황별 유달율 산정방법 연구)

  • Shon, Tae-Seok;Park, Jae-Bum;Shin, Hyun-Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.792-802
    • /
    • 2009
  • The objective of this study is to construct the watershed management system with link of the non-point sources model and to estimate delivery ratio duration curves for various pollutants. For the total water pollution load management system, non-point source model should be performed with the study of the characteristic about non-point sources and loadings of non-point source and the allotment of pollutant in each area. In this study, daily flow rates and delivered pollutant loads of Nakdong river basin are simulated with modified TANK model and minimum variance unbiased estimator and SWAT model. Based on the simulation results, flow duration curves, load duration curves, and delivery ratio duration curves have been established. Then GIS analysis is performed to obtain several hydrological geomorphic characteristics such as watershed area, stream length, watershed slope and runoff curve number. As a result, the SWAT simulation results show good agreements in terms of discharge, BOD, TN, TP but for more exact simulation should be kept studying about variables and parameters which are needed for simulation. And as a result of the characteristic discharges, pollutants loading with the runoff and delivery ratios, non-point sources effects were higher than point sources effects in the small-scale test bed of Nakdong river basin.

A Study on the Shelf Sediments from Korea Strait through Decomposition of Size Curves into Normal Components (입도곡선의 정규성분 분해에 의한 대한해협의 대륙붕 퇴적물 연구)

  • KONG Young Sae;KIM Hee Joon;MIN Geon Hong;LEE Chi Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.386-392
    • /
    • 1996
  • A numerical method based on genetic algorithms was introduced to characterize the grain-size distribution more effectively. This technique was proved significant particularly for multimodal size distributions, as was verified for samples from Korea Strait continental shelf. Sediment samples collected from the Korea Strait continental shelf revealed that $96\%$ of the grain-size distributions were multimodal. Therefore, the use of grain-size parameters was not the ideal method. As an alternative method, the decomposition of sue curves into elementary normal component curves was used. Means and standard deviations of 593 decomposed normal components were calculated by a numerical method from 268 size curves of Korea Strait sediments. The mean values of decomposed normal components showed peaks at $1\~3\phi\;and\;7\~9\phi$ size classes. The plot of mean and standard deviation values of the coarse fraction normal components on the map showed a characteristic areal distribution. The characteristic distribution was found to derive from underlying Pleistocene sediment on the basis of sea bottom geologic distribution of the area. The method of decomposition into normal components was found to be more effective than the analysis using traditional grain-size parameters in investigation of multimodal size distribution of Korea Strait shelf sediment.

  • PDF

Operation Simulation of a Microturbine Based on Test Data (시험 데이터를 지반으로 한 마이크로터빈 운전 시뮬레이션)

  • Lee, Jong-Joon;Yoon, Jae-Eun;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.22-28
    • /
    • 2006
  • Operation of a microturbine was simulated on the basis of component characteristic parameters obtained from performance test. Characteristic parameters, such as compressor and turbine efficiencies, recuperator effectiveness as well as turbine inlet temperature, were obtained for a wide operation range. Component characteristics including performance maps and characteristic curves were generated using measured data. Based on the component characteristics, a simulation program was constructed and operation of the microturbine was simulated, and the simulated results were compared with the measured data to verify the program. Also, influence of variation in the power control scheme on the operating characteristic and performance of the engine was simulated. The simulation program can be used for predicting operation of both healthy and degraded engine conditions.

Soil-Water Characteristic Curve of Weathered Granite Soils in Pocheon Area using Flow Pump Technique (플로우 펌프기법을 이용한 포천지역 화강 풍화토의 함수특성곡선)

  • Lee, Kang-Il;Lee, Joon-Yong;Back, Won-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • Flow pump technique was used in order to determine the soil-water characteristic curve of weathered granite soils in Pocheon area. This technique enables measurement to be more convenient and accurate as it is based on the CU condition of triaxial compression test. Besides, it is also able to measure dry and moisture curves continuously since the test is controled by means of a computer automatically. In this study, not only a hydraulic conductivity of weathered granite soils at fully saturated state in Pocheon area, but also a soil-water characteristic curve throughout unsaturate flow tests were determined. In addition, Brooks and Corey's model and Genuchten's model were used to simulate the soil-water characteristic curve. On the basis of the simulation an unsaturate hydraulic conductivity was predicted.