A Study on the Effects of the Coefficient of Uniformity and Porosity on the Soil-Water Characteristic Curves of Sandy Soils

사질토의 함수특성곡선에 대한 균등계수와 공극율의 영향에 관한 연구

  • Yoo, Kunsun (Halla University Department of Civil Engineering)
  • Published : 2013.05.01

Abstract

Well-graded and dense soils have good engineering properties. Unsaturated soil properties such as shear strength, compressibility and permeability are closely related to the soil-water characteristic curve of the soil. Therefore it is important to study the effects of the coefficient of uniformity and the porosity on the soil-water characteristic curve of the sandy soils, which are also related to the grain size distribution and the density of the soil, respectively. In this study soil-water characteristic curves (SWCCs) for six sandy soil specimens were investigated using Tempe pressure cells. The test data were best-fitted to Fredlund and Xing equation. The obtained fitting parameters and the characteristic points of SWCCs were discussed and correlated with the porosity and the coefficient of uniformity of the specimens. The results show that the smaller the porosity of the specimen becomes, the larger the value of the residual matric suction becomes, whereas the larger the coefficient of uniformity of the specimen becomes, the larger the value of the residual matric suction becomes. Regardless of the coefficient of uniformity, the smaller the porosity of the specimen, the flatter the max. slope of SWCC.

일반적으로 입도분포가 양호하며 조밀한 흙은 공학적 성질이 우수하다. 불포화토의 공학적 성질, 즉 전단강도, 압축성, 투수성 등의 거동은 흙의 함수특성곡선과 밀접한 관계가 있다. 따라서 사질토의 입도분포 및 다짐상태와 관련있는 균등계수와 공극율이 그 흙의 함수특성곡선에 미치는 영향을 연구하는 것은 중요하다. 본 연구에서는 6개의 사질토 시료에 대하여 템페셀을 사용하여 함수특성곡선시험을 하였다. 시험결과를 Fredlund and Xing 모델식으로 최적화하여 모델식의 매개변수를 구하였고, 시료의 균등계수와 공극율이 매개변수에 미치는 영향을 조사하였다. 시료의 잔류흡수력은 시료의 공극율이 작을수록, 그리고 균등계수가 클수록 증가하였으며, 함수특성곡선의 최대경사는 시료의 균등계수와 상관없이 공극율이 작을수록 완만해짐을 알 수 있었다.

Keywords

References

  1. Croney, D., and Coleman, J. D. (1954) Soil structure in relation to soil suction, Soil Science Journal, Vol. 5, No. 1, pp. 75-84. https://doi.org/10.1111/j.1365-2389.1954.tb02177.x
  2. Gallage, C.P.K. and Uchimura, T. (2010) Effects of Dry Density and Grain Size Distribution on Soil-Water Characteristic Curves of Sandy Soils, Soils and Foundations, Vol. 50, No. 1, pp. 161-172. https://doi.org/10.3208/sandf.50.161
  3. Fredlund, D.G. and Xing, A. (1994) Equation for the soil-water characteristic curve, Canadian Geotechnical Journal, Vol. 31, pp. 521-532. https://doi.org/10.1139/t94-061
  4. Fredlund, D.G. (2002) Use of thr soil-water characteristic curve in the implementation of unsaturated soil mechanics, Proceedings of the Third International Conference on Unsaturated Soils, UNSAT 2002, Recife, Brazil, Vol. 3, pp. 887-902.
  5. Fredlund, D.G., Rahardjo, H,., and Fredlund, M. D. (2012) Unsaturated Soil Mechanics in Engineering Practice, John Wiley & Sons, Inc, New Jersey.
  6. Rahardjo, H., Satyanaga, A., D'Amore, G.A.R. Leong, E.C. (2012) Soil-water characteristic curves of gap-graded soils, Engineering Geology, Vol. 125, No. 27 pp. 102-107 https://doi.org/10.1016/j.enggeo.2011.11.009
  7. Van Genuchten, M.T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, Vol. 44, pp. 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  8. Yang, H., Rahardjo, H., Leong, E.C. and Fredlund, D.G. (2004) Factors affecting drying and wetting soil-water characteristic curves of sandy soils, Canadian Geotechnical Journal, Vol. 41, pp. 908-920. https://doi.org/10.1139/t04-042