• Title/Summary/Keyword: Character Strength

Search Result 199, Processing Time 0.029 seconds

A study on the switching character of MOS-GTO and the design of gate drive circuit (MOS-GTO의 스위칭 특성과 Gate Drive 회로 설계에 관한 연구)

  • Roh, Jin-Eep;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.231-233
    • /
    • 1991
  • This paper discribes a study on the switching character of MOS-GTO and the design of gate drive circuit. Chopping power supply converter, synchronious and asyncronious motor speed adjustment, inverter, etc., needs low drive energy "high frequency" switches. To fulfill these need, switches must have rapid switching time and insulated gate control. MOS-GTO structure is well suited to these constraints. The power switch is serial installation of a GTO thyrister and a MOS Transistor. The gate of the GTO is linked to positive pole of the cascode structure via a MOS high voltage transistor and ground via a transient absorber diode. This high performance MOS-GTO assembly considerably increases the strength which facilitate the drive of GTO thyristers.

  • PDF

Curvature Effect on the Barrier from the Physisorption to the Chemisorption of H2 on Graphene

  • Kang, Baotao;Kang, Sun-Woo;Yan, Shihai;Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.934-938
    • /
    • 2011
  • The curvature dependence of the physisorptions of $H_2$ on graphene surface and their barrier to the chemisorptions has been studied. The graphene with steeper curvature can adsorb $H_2$ stronger due to the more $sp^3$ character of the carbon. However, for the negative curvature, the binding strength of the physisorption and the barrier to the chemisorptions are determined by steric repulsion as well as the $sp^3$ character.

Experimental investigation of local damage in high strength concrete columns using a shaking table

  • Bairrao, Rogerio;Kacianauskas, Rimantas;Kliukas, Romualdas
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.581-602
    • /
    • 2005
  • In this paper the accumulation of local damage during the cyclic loading in reinforced high-strength concrete columns is experimentally investigated. Two identical column specimens with annular cross-section and spiral reinforcement were designed and two tests, up to failure, under the action of a constant vertical concentrated force and a time-dependent concentrated horizontal force, were carried out at the LNEC shaking tables facility. Sine type signals, controlled in amplitude, frequency and time duration were used for these experiments. The concept of local damage based on local stiffness degradation is considered in detail and illustrated by experimental results. The specimens were designed and reinforced in such a way that the accumulation of damage was predicted by dominating deformations (cracking and crushing of the concrete) while the increasing of the loading values was a dominating factor of damage. It was observed that the local damage of HSC columns has exposed their anisotropic local behaviour. The damage accumulation was slightly different from the expected in accordance with the continuum damage concept, and a partial random character was observed.

Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630 (관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響))

  • Sae-Kyoo,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.2
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

Effects of core characters and veneering technique on biaxial flexural strength in porcelain fused to metal and porcelain veneered zirconia

  • Oh, Ju-Won;Song, Kwang-Yeob;Ahn, Seung-Geun;Park, Ju-Mi;Lee, Min-Ho;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.349-357
    • /
    • 2015
  • PURPOSE. The purpose of this study was to assess the impact of the core materials, thickness and fabrication methods of veneering porcelain on prosthesis fracture in the porcelain fused to metal and the porcelain veneered zirconia. MATERIALS AND METHODS. Forty nickel-chrome alloy cores and 40 zirconia cores were made. Half of each core group was 0.5 mm-in thickness and the other half was 1.0 mm-in thickness. Thus, there were four groups with 20 cores/group. Each group was divided into two subgroups with two different veneering methods (conventional powder/liquid layering technique and the heat-pressing technique). Tensile strength was measured using the biaxial flexural strength test based on the ISO standard 6872:2008 and Weibull analysis was conducted. Factors influencing fracture strength were analyzed through three-way ANOVA (${\alpha}{\leq}.05$) and the influence of core thickness and veneering method in each core materials was assessed using two-way ANOVA (${\alpha}{\leq}.05$). RESULTS. The biaxial flexural strength test showed that the fabrication method of veneering porcelain has the largest impact on the fracture strength followed by the core thickness and the core material. In the metal groups, both the core thickness and the fabrication method of the veneering porcelain significantly influenced on the fracture strength, while only the fabrication method affected the fracture strength in the zirconia groups. CONCLUSION. The fabrication method is more influential to the strength of a prosthesis compared to the core character determined by material and thickness of the core.

Correlation between Compressive Strength and Unit Weight of Lightweight Foamed Controlled Low Strength Material (CLSM) Using Coal Ash (석탄회를 활용한 경량기포 CLSM의 압축강도와 단위중량의 상관관계)

  • Lee, Jong-Hwi;Lee, Hye-Jin;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.39-47
    • /
    • 2013
  • With the increase in the application of CLSM using coal ash, we performed a basic research on CLSM material, laying focus on the correlation between compressive strength and unit weight of lightweight foamed CLSM. The unconfined compression strength is a criterion for the judgment of the possibility of re-excavation and an important factor determining the economy, efficiency, and excavation character. However, to know the quantitative compression strength value takes a certain amount of time, because the applicability of unconfined compression strength of CLSM is judged by the standard of 28days. Therefore, in this study the relation between compressive strength and unit weight (foam slurry unit weight, apparent unit weight) is analyzed focusing on lightweight foamed CLSM. We also suggested a formula which can easily predict the 28-day compressive strength only using unit weight value without the need to cure the slurry for 28 days.

Direct Bonding Characteristics of 2" 3C-SiC Wafers for Harsh Environment MEMS Applications (극한 환경 MEMS용 2" 3C-SiC기판의 직접접합 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.700-704
    • /
    • 2003
  • This paper describes on characteristics of 2" 3C-SiC wafer bonding using PECVD (plasma enhanced chemical vapor deposition) oxide and HF (hydrofluoride acid) for SiCOI (SiC-on-Insulator) structures and MEMS (micro-electro-mechanical system) applications. In this work, insulator layers were formed on a heteroepitaxial 3C-SiC film grown on a Si (001) wafer by thermal wet oxidation and PECVD process, successively. The pre-bonding of two polished PECVD oxide layers made the surface activation in HF and bonded under applied pressure. The bonding characteristics were evaluated by the effect of HF concentration used in the surface treatment on the roughness of the oxide and pre-bonding strength. Hydrophilic character of the oxidized 3C-SiC film surface was investigated by ATR-FTIR (attenuated total reflection Fourier transformed infrared spectroscopy). The root-mean-square suface roughness of the oxidized SiC layers was measured by AFM (atomic force microscope). The strength of the bond was measured by tensile strength meter. The bonded interface was also analyzed by IR camera and SEM (scanning electron microscope), and there are no bubbles or cavities in the bonding interface. The bonding strength initially increases with increasing HF concentration and reaches the maximum value at 2.0 % and then decreases. These results indicate that the 3C-SiC wafer direct bonding technique will offers significant advantages in the harsh MEMS applications.ions.

A Study on Live Loads in School (학교교실의 적재하중에 관한 연구)

  • 서극수;박성수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.61-69
    • /
    • 1994
  • The most fundamental elements in analyzing the structure of building are strength of maerials and value of loads. The applied loads of structural analysis in our country are classified into the dead and live loads. This study, with special reference to live load, is to suggest the stochastic character of live load and the appropriate live load by using the Monte-carlo Simulation method, one of the O. R(Operations Research) techniques acting on school buildings.

  • PDF

Effect of Stretching on Cellulose Fiber Swelling in Alkali Aqueous Solutions (알칼리수용액안에서 셀룰로오스섬유가 팽윤할 때 장력이 미치는 영향)

  • 최철호
    • Textile Coloration and Finishing
    • /
    • v.4 no.3
    • /
    • pp.91-96
    • /
    • 1992
  • The crystalline character of NaOH and KOH-cellulose complex having different tension ratio was studied using X-ray diffraction analysis. Cellulose crystalline lattices in tension alkali treatment cotton were identified by measuring and indexing the 101, 101, and 002 reflections. According as alkali treatment tension ratio increased on, cellulose gave rise to the formation of I rather than cellulose II. It seemed that a part of the fine structure of cellulose increased orientation with antiparaell and parallel chain crystal structure. The high tension ratio alkali treatment cotton resulted in lower dye sorption and in higher breaking strength and crease recovery.

  • PDF

A Study on the Strength Characteristics of the FRP Bonding Method (FRP 이음방식에 따른 구조강도 특성에 관한 연구)

  • Kim, Kung-Woo;Kang, Dae-Kon;Baek, Myoung-Kee;Park, Jai-Hak
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.778-783
    • /
    • 2015
  • We studied about the strength characteristics of the FRP bonding method due to reduce accident on the oceans and protect life for my people. We test tension and bending strength of butt joint, lap joint, V-scarf joint, X-scarf joint. The result of test, it's pattern is similar both tension and bending strength. Tension strength and bending strength was excellent in order to X-scarf-butt joint-V-scarf-lap joint. The tension strength is the best properties X-scarf showed a 57% strength rate of the basic material, and bending strength showed a 77% strength rate of the basic material. Overall, the X-scarf 12t joint has most excellent properties of tension and bending strength. The lap joint has worst properties of tension and bending strength. We have to test having different over-lay of V-scarf and X-scarf joint each 12t, 16t, 20t. V-scarf of 20t over-lay has excellent character of tension and bending strength. But X-scarf of 12t over-lay has excellent character of tension and bending strength. The results are shown to the contrary. The ship is received a lot of stress. it's hard to compare a direction both actual and test. But we can acknowledge material basic characteristic of strength through tension and bending test. We give the four repair method; butt joint, lap joint, V-scarf joint, X-scarf joint and the reduced ratio in comparison with basic material; In addition give the separated data for V-scarf and X-scarf characteristic of 12t, 16t, 20t overlay length. For our study repair man can select good repair method in his work station.