DOI QR코드

DOI QR Code

Curvature Effect on the Barrier from the Physisorption to the Chemisorption of H2 on Graphene

  • Kang, Baotao (Department of Chemistry, Sungkyunkwan University) ;
  • Kang, Sun-Woo (Department of Chemistry, Sungkyunkwan University) ;
  • Yan, Shihai (Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences) ;
  • Lee, Jin-Yong (Department of Chemistry, Sungkyunkwan University)
  • Received : 2010.10.08
  • Accepted : 2011.01.13
  • Published : 2011.03.20

Abstract

The curvature dependence of the physisorptions of $H_2$ on graphene surface and their barrier to the chemisorptions has been studied. The graphene with steeper curvature can adsorb $H_2$ stronger due to the more $sp^3$ character of the carbon. However, for the negative curvature, the binding strength of the physisorption and the barrier to the chemisorptions are determined by steric repulsion as well as the $sp^3$ character.

Keywords

References

  1. Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. https://doi.org/10.1038/nmat1849
  2. Elias, D. C.; Nair, R. R.; Mohiuddin, M. G.; Blake, S. V.;Morozov, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.;Geim, M. I.; Katsnelson, A. K.; Novoselov, K. S. Science 2009,323, 610. https://doi.org/10.1126/science.1167130
  3. Schlapbach, L.; Zuttel, A. Nature 2001, 414, 353. https://doi.org/10.1038/35104634
  4. Yu, D.; Liu, F. Nano Lett. 2007, 7, 3046. https://doi.org/10.1021/nl071511n
  5. Ryu, S.; Han, M. Y.;Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L.E. Nano Lett. 2008, 8, 4597. https://doi.org/10.1021/nl802940s
  6. A. Savchenko, Science 2009, 323, 589. https://doi.org/10.1126/science.1169246
  7. Ghio, E.; Mattera, L.; Salvo, C.; Tommasini, F.; Valbusa, U. J. Chem. Phys. 1980, 73, 556. https://doi.org/10.1063/1.439855
  8. Jeloaica, L.; Sidis, V. Chem. Phys.Lett. 1999, 300, 157. https://doi.org/10.1016/S0009-2614(98)01337-2
  9. Chang, H.; Pez, G. P.; Cooper, A. C. J. Am. Chem. Soc. 2001, 123, 5845. https://doi.org/10.1021/ja0155231
  10. Sha, X.; Jackson, B. Surf. Sci. 2002, 496, 318. https://doi.org/10.1016/S0039-6028(01)01602-8
  11. Zecho, T.; Guttler, A.; Kuppers, J. Carbon 2004, 42, 609. https://doi.org/10.1016/j.carbon.2003.12.068
  12. Zecho, T.; Guttler, A.; Sha, X.; Jackson, B.; Kuppers, J. J. Chem. Phys. 2002, 117, 8486. https://doi.org/10.1063/1.1511729
  13. Miura, Y.; Kasai, H.; Dino, W.;Nakanishi, H.; Sugimoto, T. J. Appl. Phys. 2003, 93, 3395. https://doi.org/10.1063/1.1555701
  14. Hornekaer, L.; ljivan anin, .; Xu, W.; Otero, R.; Rauls, E.;Stensgaard, I.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Phys.Rev. Lett. 2006, 96, 156104. https://doi.org/10.1103/PhysRevLett.96.156104
  15. Sofo, J. O.; Chaudhari, A. S.;Barber, G. D. Phys. Rev. B 2007, 75, 153401. https://doi.org/10.1103/PhysRevB.75.153401
  16. Boukhvalov, D.W.; Katsnelson, M. I.; Lichtenstein, A. I. Phys. Rev. B 2008, 77,035427. https://doi.org/10.1103/PhysRevB.77.035427
  17. Okamoto, Y.; Miyamoto, Y. J. Phys. Chem. B 2001, 105, 3470. https://doi.org/10.1021/jp003435h
  18. Chernozatonskii, L. A.; Sorokin, P. B.; Brüning, J. W. Appl. Phys. Lett. 2007, 91, 183103. https://doi.org/10.1063/1.2800889
  19. Tada, K.; Furuya, S.; Watanabe, K. Phys. Rev. B 2001, 63,155405. https://doi.org/10.1103/PhysRevB.63.155405
  20. Lee, E.-C.; Kim, Y.-S.; Jin, Y.-G.; Chang, K. J. Phys. Rev. B 2002, 66, 073415. https://doi.org/10.1103/PhysRevB.66.073415
  21. Ruffieux, P.; Gröning, O.; Bielmann,M.; Mauron, P.; Schlapbach, L.; Groning, P. Phys. Rev. B 2002,66, 245416. https://doi.org/10.1103/PhysRevB.66.245416
  22. Frisch, M. J. et al. Gaussian 03, Gaussian, Inc., Wallingford, CT,2004.
  23. Zhou, B.; Guo, W.; Dai, Y. J. Phys. Chem. C 2008, 112, 18516. https://doi.org/10.1021/jp8057959

Cited by

  1. Electric Field Effects on the Adsorption of CO on a Graphene Nanodot and the Healing Mechanism of a Vacancy in a Graphene Nanodot vol.116, pp.4, 2012, https://doi.org/10.1021/jp210719r
  2. Oxygen adsorption on single layer graphyne: a DFT study vol.16, pp.3, 2014, https://doi.org/10.1039/C3CP53237B
  3. A simple general descriptor for rational design of graphyne-based bifunctional electrocatalysts toward hydrogen evolution and oxygen reduction reactions vol.592, pp.None, 2011, https://doi.org/10.1016/j.jcis.2021.02.052