• Title/Summary/Keyword: Chaos Signal

Search Result 111, Processing Time 0.029 seconds

Secure Communication of Chaos Circuit (카오스 회로의 암호 통신)

  • Bae, Young-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2407-2409
    • /
    • 2000
  • Chua's circuit is a simple electronic network which exhibits a variety of bifurcation and attractors. The circuit consists of two capacitors, an inductor, a linear resistor, and a nonlinear resistor. In this paper, a transmitter and a receiver using two identical Chua's circuits are proposed and a equivalent T type wire secure communications are investigated. A secure communication method in which the desired information signal is synthesized with the chaos signal created by the Chua's circuit is proposed and information signal is demodulated also using the Chua's circuit. The proposed method is synthesizing the desired information with the chaos circuit by adding the information signal to the chaos signal in the wire transmission system.

  • PDF

Performance of DCSK under the Coexistence of non-Chaotic Transmit Reference System

  • Thapaliya, Karuna;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1138-1145
    • /
    • 2007
  • In wireless communications, chaotic communications have been a field of interest due to its low complexity in hardware implementation and low power consumption in chaotic signal generation. Among the modulation schemes using the chaotic signal, Differential Chaos Shift Keying (DCSK) is a robust non coherent technique. As in the conventional communication systems, chaos-based systems are required to provide reasonable bit error performance in the presence of a narrow-band signal coming from any other systems. The frequency band of this foreign narrow band signal may lie within the bandwidth of the chaos-based systems. This situation may occur when chaotic signal transmission is done in the presence of other conventional communication system. This paper has evaluated the performance of the non coherent differential chaos shift keying (DCSK) system under the presence of conventional non-chaotic transmit reference system. Both systems are assumed to have same data rates. The mathematical expressions for the bit error rate (BER) are derived with computer simulations to verify the analytical results.

FPGA Implementation of Chaotic Signal Generator Using System generator (System Generator를 이용한 카오스 신호 발생기의 FPGA 구현)

  • Hur, Yong-Won;Ha, Jeong-Woo;Jang, Eun-Young;Byon, Kun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.336-339
    • /
    • 2007
  • A chaos signal is used in all fields like engineering, a medical science and a biology very much, and study regarding the digital communication system that used a recent chaos signal is consisting actively. Applied a chaos signal in a digital communication system, and this paper designed six chaos signal generator to have been composed of by nonlinear equations as used System Generator, and implemented hardware to FPGA. Loaded bit stream to a FPGA board in order to verify this design to Hardware co-simulation from these results. Also, compared as investigated the maximum action frequency through timing analysis and resource of logic in order to evaluate performance of six chaos generator.

  • PDF

Chaos Secure Communication Using Chua Circuit (Chua 회로에서의 카오스 비밀통신)

  • 배영철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.238-241
    • /
    • 2000
  • In this paper, we formed a transmitter and receiver by using two identical Chua's circuits and then formed wireless transmission line from the channel which was between those two circuits. We proposed a secure communication method in which the desired information signal was synthesized with the chaos signal created in a Chua's circuit and sent to the transmitter through channel. Then the signal was demodulated receiver of Chua's circuit. The Method we used to accomplish the secure communication was synthesizing the desired information with the chaos circuit by parallel connection in a wireless transmission line. After transmitting the synthesized signal to the wireless transmission line, we confirmed the actuality of the secure communication by separating the information signal and the chads signal in the receiver. In order to confirm the security, we compared the wiretapped signal and the recovery signal under the assumption that the wiretapping had taken place. In order to separate the two signals, we transformed the information signal to a current source in the transmitter and detected the current in the receiver.

  • PDF

Speech Signal Processing for Analysis of Chaos Pattern (카오스 패턴 발견을 위한 음성 데이터의 처리 기법)

  • Kim, Tae-Sik
    • Speech Sciences
    • /
    • v.8 no.3
    • /
    • pp.149-157
    • /
    • 2001
  • Based on the chaos theory, a new method of presentation of speech signal has been presented in this paper. This new method can be used for pattern matching such as speaker recognition. The expressions of attractors are represented very well by the logistic maps that show the chaos phenomena. In the speaker recognition field, a speaker's vocal habit could be a very important matching parameter. The attractor configuration using change value of speech signal can be utilized to analyze the influence of voice undulations at a point on the vocal loudness scale to the next point. The attractors arranged by the method could be used in research fields of speech recognition because the attractors also contain unique information for each speaker.

  • PDF

A Novel Design of CDSK Receiver for Improving the BER Performance (BER 성능 향상을 위해 제안하는 새로운 CDSK 수신기)

  • Lee, Jun-Hyun;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.638-643
    • /
    • 2013
  • Chaos communication system has a sensitive characteristic to initial conditions, because completely another signal is generated when initial condition of chaos equation is changed subtly. Also, chaos communication systems have the characteristics of non-periodic, non-predictability, the broadband signal, such as ease of implementation. Due to these characteristics, security of chaos communication system generally is evaluated better than other systems. However, BER(Bit Error Rate) performance is evaluated worse than other digital system, because existing chaos communication system's transmitter and receiver are strong influence by interference signal and noise. So, research to improve the BER performance of the chaotic communication system is performed continuously. In this paper, We will propose a new CDSK(Correlation Delay Shift Keying) receiver for BER performance improvement. After we compare to the performance of existing CDSK receiver and proposed CDSK receiver, BER performance of proposed CDSK receiver evaluate. Also, when using the new CDSK receiver, we evaluate the BER performance according to the spreading factors and find an optimum spreading factor. If chaos communication system use a new CDSK receiver, BER performance is improved than existing CDSK receiver. Also, if spreading factor's value is increased, BER performance is improved, because it is not nearly affected by interference signal and noise.

Microcontroller-based Chaotic Signal Generator for Securing Power Line Communication: Part I-A System View (전력선 암호화 통신을 위한 마이크로콘트롤러 기반 카오스 신호 발생기: 1부 - 시스템 뷰)

  • Al-Shidaifat, Ala'aDdin;Jayawickrama, Chamindra;Ji, Sunghyun;Nguyen, Van Ha;Kwon, Yoo-Jin;Song, Hanjung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.563-567
    • /
    • 2016
  • In this paper, the chaos-based secure scheme for power line communication is proposed for the first time. A digitalized chaotic generator based Lorenz system is utilized for generating nonlinear dynamic chaotic signal for masking the information signal instead of reported analog chaotic generators. A simple method of encryption and decryption is also given. In order to confirm the feasibility of the proposed scheme, the system is simulated using a simplified encryption/decryption method in Proteus. The gained results from simulation demonstrated that by using the chaos-based security method, the data can be encrypted and easily transmitted through the power line network efficiently.

Implementation of Chaotic UWB Systems for Low Rate WPAN

  • Lee, Cheol-Hyo;Kim, Jae-Young;Kim, Young-Kkwan;Choi, Sun-Kyu;Jang, Ui-Gi
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.339-342
    • /
    • 2005
  • In order to support ultrawide-band signal generation for low rate WPAN, several types of signal generation mechanisms are suggested such as Chaos, Impluse, and Chirp signals by the activity of IEEE 802.15.4a. The communication system applied chaos theory may have ultrawide-band characteristics with spread spectrum and immunity from multipath effect. In order to use the advantage of chaotic signal generation, we introduce the system implementation of communication and networking systems with the chaos UWB signal. This system may be composed of mainly three parts in hardware architecture : RF transmission with chaotic signal generation, signal receiver using amplifiers and filters, and 8051 & FPGA unit. The most difficult part is to implement the chaotic signal generator and build transceiver with it. The implementation of the system is devidced into two parts i.e. RF blocks and digital blocks with amplifiers, filters, ADC, 8051 processor, and FPGA. In this paper, we introduce the system block diagram for chaotic communications. Mainly the RF block is important for the system to have good performance based on the chaotic signal generator. And the main control board functions for controlling RF blocks, processing Tx and Rx data, and networking in MAC layer.

  • PDF

Construction fo chaos simulator for ultrasonic pattern recognition evaluation of weld zone in austenitic stainless steel 304 (오스테나이트계 스테인리스강 304 용접부의 초음파 형상 인식 평가를 위한 카오스 시뮬레이터의 구축)

  • Yi, Won;Yun, In-Sik;Chang, Young-Kwon
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.108-118
    • /
    • 1998
  • This study proposes th analysis and evaluation method of time series ultrasonic signal using the chaos feature extraction for ultrasonic pattern recognition. Features extracted from time series data using the chaos time series signal analyze quantitatively weld defects. For this purpose, analysis objective in this study is fractal dimension and Lyapunov exponent. Trajectory changes in the strange attractor indicated that even same type of defects carried substantial difference in chaosity resulting from distance shifts such as 0.5 and 1.0 skip distance. Such differences in chaosity enables the evaluation of unique features of defects in the weld zone. In quantitative chaos feature extraction, feature values of 4.511 and 0.091 in the case of side hole and 4.539 and 0.115 in the case of vertical hole were proposed on the basis of fractal dimension and Lyapunov exponent. Proposed chaos feature extraction in this study can enhances ultrasonic pattern recognition results from defect signals of weld zone such as side hole and vertical hole.

  • PDF

Nonlinear Time Series Analysis of Biological Chaos (생체 카오스의 비선형 시계열 데이터 분석)

  • 이병채;이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.347-354
    • /
    • 1994
  • This paper describes a diagnostic protocol of nonlinear dynamic characteristics of biological system using chaos theory. An integrated chaos analysis system for the diagnosis of biological system was designed. We suggest a procedure of attractor reconstruction for reliable qualitative and quantitative analysis. The effect of autonomic nervous system activity on heart rate variability with power spectral analysis and its characteristics of chaotic attractors are investigated. The results show the applicability to evaluate the mental and physical conditions using nonlinear characteristics of biological signal.

  • PDF