• Title/Summary/Keyword: Channel networks

Search Result 1,813, Processing Time 0.041 seconds

Performance Analysis of CMAP-WDMA MAC Protocol for Metro-WDMA Networks

  • Yun, Chang-Ho;Cho, A-Ra;Park, Jong-Won;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.480-488
    • /
    • 2009
  • A channel-shared modified accelerative pre-allocation wavelength division multiple access (CMAP-WDMA) media access control (MAC) has been proposed for metro-WDMA networks, as an extension of modified pre-allocation wavelength division multiple access (MAP-WDMA) MAC protocol. Similarly, CAP WDMA as an extension of accelerative pre-allocation wavelength division multiple access (AP-WDMA) MAC protocol. Performance of CMAP- and CAP-WDMA was extensively investigated under several channel sharing methods (CSMs), asymmetric traffic load patterns (TLPs), and non-uniform traffic distribution patterns (TDPs). The result showed that the channel utilization of the CMAP-WDMA always outperforms that of CAP-WDMA at the expense of longer channel access delay for channel shared case while CMAP-WDMA provided higher channel utilization at specific network conditions but always shorter channel access delay than CAP-WDMA for non-channel shared case. Additionally both for CMAP- and CAP-WDMA, determining an effective CSM is a critical design issue because TDPs and TLPs can be neither managed nor expected while CSM is manageable, and the CSM supporting the best channel utilization can be recommended.

Traffic Flow Estimation based Channel Assignment for Wireless Mesh Networks

  • Pak, Woo-Guil;Bahk, Sae-Woong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.68-82
    • /
    • 2011
  • Wireless mesh networks (WMNs) provide high-speed backbone networks without any wired cable. Many researchers have tried to increase network throughput by using multi-channel and multi-radio interfaces. A multi-radio multi-channel WMN requires channel assignment algorithm to decide the number of channels needed for each link. Since the channel assignment affects routing and interference directly, it is a critical component for enhancing network performance. However, the optimal channel assignment is known as a NP complete problem. For high performance, most of previous works assign channels in a centralized manner but they are limited in being applied for dynamic network environments. In this paper, we propose a simple flow estimation algorithm and a hybrid channel assignment algorithm. Our flow estimation algorithm obtains aggregated flow rate information between routers by packet sampling, thereby achieving high scalability. Our hybrid channel assignment algorithm initially assigns channels in a centralized manner first, and runs in a distributed manner to adjust channel assignment when notable traffic changes are detected. This approach provides high scalability and high performance compared with existing algorithms, and they are confirmed through extensive performance evaluations.

Interference Avoidance through Pilot-Based Spectrum Sensing Algorithm in Overlaid Femtocell Networks

  • Sambanthan, Padmapriya;Muthu, Tamilarasi
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • Co-channel interference between macro-femtocell networks is an unresolved problem, due to the frequency reuse phenomenon. To mitigate such interference, a secondary femtocell must acquire channel-state knowledge about a co-channel macrocell user and accordingly condition the maximum transmit power of femtocell user. This paper proposes a pilot-based spectrum sensing (PSS) algorithm for overlaid femtocell networks to sense the presence of a macrocell user over a channel of interest. The PSS algorithm senses the pilot tones in the received signal through the power level and the correlation metric comparisons between the received signal and the local reference pilots. On ensuring the existence of a co-channel macrocell user, the maximum transmit power of the corresponding femtocell user is optimized so as to avoid interference. Time and frequency offsets are carefully handled in our proposal. Simulation results show that the PSS algorithm outperforms existing sensing techniques, even at poor received signal quality. It requires less sensing time and provides better detection probability over existing techniques.

Underlay Cooperative Cognitive Networks with Imperfect Nakagami-m Fading Channel Information and Strict Transmit Power Constraint: Interference Statistics and Outage Probability Analysis

  • Ho-Van, Khuong;Sofotasios, Paschalis C.;Freear, Steven
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • This work investigates two important performance metrics of underlay cooperative cognitive radio (CR) networks: Interference cumulative distribution function of licensed users and outage probability of unlicensed users. These metrics are thoroughly analyzed in realistic operating conditions such as imperfect fading channel information and strict transmit power constraint, which satisfies interference power constraint and maximum transmit power constraint, over Nakagami-m fading channels. Novel closed-form expressions are derived and subsequently validated extensively through comparisons with respective results from computer simulations. The proposed expressions are rather long but straightforward to handle both analytically and numerically since they are expressed in terms of well known built-in functions. In addition, the offered results provide the following technical insights: i) Channel information imperfection degrades considerably the performance of both unlicensed network in terms of OP and licensed network in terms of interference levels; ii) underlay cooperative CR networks experience the outage saturation phenomenon; iii) the probability that the interference power constraint is satisfied is relatively low and depends significantly on the corresponding fading severity conditions as well as the channel estimation quality; iv) there exists a critical performance trade-off between unlicensed and licensed networks.

Cognitive Relay Networks with Underlay Spectrum Sharing and Channel Estimation Error: Interference Probability and BER Analysis

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.301-304
    • /
    • 2014
  • This paper proposes accurate interference probability and bit error rate formulas for cognitive relay networks with underlay spectrum sharing and channel estimation error (CEE). Numerous results reveal that the CEE not only degrades the performance of secondary systems (SSs) but also increases interference power caused by SSs to primary systems (PSs), eventually unfavorable to both systems. A solution to further protect PSs from this effect through reducing the power of secondary transmitters is investigated and analyzed.

Rendezvous in Cognitive Radio Networks without Common Control Channel

  • Htike, Zaw;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.230-231
    • /
    • 2011
  • In this paper, we propose a rendezvous mechanism for cognitive radio networks. In this mechanism, no prior knowledge of wireless nodes is required and it is totally distributed. Node can simply choose one of two strategies to rendezvous with its neighbors. The main benefit of this mechanism is eliminating the use of common control channel and centralized controller.

Receiver-driven Channel Rendezvous for Multi-channel Wireless Sensor Networks

  • Rahman, Md. Obaidur;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.359-360
    • /
    • 2011
  • In this work. a new receiver-driven channel rendezvous mechanism is proposed for multi-channel communication in Wireless sensor networks (WSNs). The work is a light-weight scheduled scheme. seems to be incurring less overhead in compare to traditional common control channel based rendezvous mechanisms.

Understanding Channel-diversity Oriented Routing Metrics for Multicast in Wireless Mesh Networks

  • Gao, Hui;Nam, Ji-seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.418-420
    • /
    • 2013
  • Issues on design of routing scheme and routing metric for multicast in multi-channel multi-radio (MCMR) wireless mesh networks (WMNs) are discussed. Emphasis is placed on channel-diversity oriented routing metrics. From case study the conclusion to be drawn is that the key for design of channel-diversity oriented routing metrics is how to construct an optimization function to quantify interdependence between channel assignment and multicast routing throughput.

Fuzzy Logic Based Neural Network Models for Load Balancing in Wireless Networks

  • Wang, Yao-Tien;Hung, Kuo-Ming
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.38-43
    • /
    • 2008
  • In this paper, adaptive channel borrowing approach fuzzy neural networks for load balancing (ACB-FNN) is presented to maximized the number of served calls and the depending on asymmetries traffic load problem. In a wireless network, the call's arrival rate, the call duration and the communication overhead between the base station and the mobile switch center are vague and uncertain. A new load balancing algorithm with cell involved negotiation is also presented in this paper. The ACB-FNN exhibits better learning abilities, optimization abilities, robustness, and fault-tolerant capability thus yielding better performance compared with other algorithms. It aims to efficiently satisfy their diverse quality-of-service (QoS) requirements. The results show that our algorithm has lower blocking rate, lower dropping rate, less update overhead, and shorter channel acquisition delay than previous methods.

Throughput of Coded DS CDMA/Unslotted ALOHA Networks with Variable Length Data Traffic and Two User Classes in Rayleigh Fading FSMC Model

  • Tseng, Shu-Ming;Chiang, Li-Hsin;Wang, Yung-Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4324-4342
    • /
    • 2014
  • Previous papers analyzed the throughput performance of the CDMA ALOHA system in Rayleigh fading channel, but they assume that the channel coefficient of Rayleigh fading was the same in the whole packet, which is not realistic. We recently proposed the finite-state Markov channel (FSMC) model to the throughput analysis of DS uncoded CDMA/unslotted ALOHA networks for fixed length data traffic in the mobile environment. We now propose the FSMC model to the throughput analysis of coded DS CDMA/unslotted ALOHA networks with variable length data traffic and one or two user classes in the mobile environment. The proposed DS CDMA/unslotted ALOHA wireless networks for two user classes with access control can maintain maximum throughput for the high priority user class under high message arrival per packet duration.