• Title/Summary/Keyword: Channel flows

Search Result 566, Processing Time 0.025 seconds

Impact Analysis of Different Form on Drainability at River Confluence Area (하천합류부 구조에 따른 배수능력 해석)

  • An, ShanFu;Chen, Guoxin;Chun, Do-Seok;Jee, Hong-Kee
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.624-627
    • /
    • 2007
  • There are many channel confluences existing in natural river systems, where the hydraulics are very complex because of the interactive between tributary and main river The RMA-2 model Is applied in this paper to model the confluence between Uksu Chun subriver and Nam Chun main river. Based on three types of assumed confluence forms, the model resuits present the hydraulics at channel confluence can be divided into several zones including a zone of separation immediately downstream of the junction branch channel, a maximum and minimum velocity region at upstream and downstream in the confluent channel, and a shear plane developed between the two combing flows at downstream of confluent channel. And the different types of confluent forms performs a very high effect on drainability of tributary, so it is very necessary to design a reasonable confluent forms.

  • PDF

A Scheduling Scheme using Partial Channel Information for Ad-hoc Networks (Ad-hoc 망에서 채널의 부분정보를 이용한 스케줄링 기법)

  • 신수영;장영민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11B
    • /
    • pp.1031-1037
    • /
    • 2003
  • A new scheduling scheme, which uses channel quality information of each flow in Bluetooth system of ad-hoc network for effective bandwidth assignment, has been proposed in this paper. By an effective bandwidth assignment, QoS (Quality of Service) could have been ensured in case of asymmetric data traffic, mixed data transmission, and congested data transmission in a specific channel. The scheduling algorithm determines channel weights using partial channel information of flows. Case studies conducted by NS-2 (Network Simulator 2) and Bluehoc simulator has been presented to show the effectiveness of the proposed scheduling scheme.

AUGMENTATION OF TURBULENT HEAT TRANSFER IN A CHANNEL USING A SQUARE ROD (2차원 채널에서 사각봉을 이용한 난류열전달 증가에 대한 수치해석)

  • Kim, Hee-Young;Park, Tae-Seon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.118-124
    • /
    • 2008
  • The characteristics of heat transfer in a two-dimensional channel obstructed by a square rod is investigated by a turbulence model. The computation is made for the six cases of different rod positions between channel walls. To analyze the wall heat transfer, the heat flux of channel walls is set as a constant value and the $k-{\epsilon}-f_{\mu}$ model is employed. Downstream the square rod, the flow recirculation region appear and they are varied by the rod position. The enhancement of the turbulent heat transfer to the wall is induced by the flow instability using a square rod. The averaged heat transfer rate is maximized at a specific rod position. Finally, the effects of square rod on unsteady flows are scrutinized with the frequency analysis.

  • PDF

Numerical Study on the Droplet Flows in a Cross-Junction Channel Using the Lattice Boltzmann Method (Lattice Boltzmann 법을 이용한 Cross-Junction 채널 내의 droplet 유동에 관한 수치해석적 연구)

  • Park, Jae-Hyoun;Suh, Young-Kweon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.407-410
    • /
    • 2006
  • This study describes a simulation of two-dimensional bubble forming and motion by the Lattice Boltzmann Method with the phase field equation. The free energy model is used to treat the interfacial force and deformation of binary fluids system, drawn into a T-junction the micro channel. A numerical simulation of a binary flow in a cross-junction channel is carried out by using the parallel computation method. The aim in this investigation is to examine the applicability of LBM to numerical analysis of binary fluid separation and motion in the micro channel.

  • PDF

Numerical Study on The Pressure Drop of Immiscible Two-Phase Flow in The Pressure Driven Micro Channel Using Lattice Boltzmann Method (Lattice Boltzmann 방법을 이용한 압력구동 미세채널 내 비혼합 2상 유체 흐름의 압력강하에 대한 수치적 연구)

  • Jeong, Soo-In;Kim, Kui-Soon;Kang, Beom-Soon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.436-439
    • /
    • 2008
  • Computer simulation of multiphase flows has grown dramatically in the last two decades. In this work, we have studied the flow characteristics of immiscible two fluids in a 2-D micro channel driven by pressure gradient using multi-phase lattice Boltzmann method suggested by Shan and Chen(1993) considering the fluid-surface interaction. we tried to examine the effects of parameters related to the two phase flow characteristics and pressure drop in the micro channel like contact angle and channel configuration by changing their value. The results of current study could show the lattice Boltzmann method can simulate the behaviors of two phase flow in the region of micro fluidics well.

  • PDF

Numerical Analysis of Electroosmotically Enhanced Microchannel Heat Sinks (전기삼투를 이용한 미세열방출기의 수치해석)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2544-2547
    • /
    • 2008
  • A micro channel heat sink has been studied and optimized for mixed pressure driven and electroosmotic flows through three-dimensional numerical analysis. The effects of ionic concentration represented by zeta potential and Debye thickness are studied with the various steps of externally applied electric potential. Optimization of the micro channel heat sink has been performed considering two design variables related to the micro channel width, depth and fin width. The surrogate-based optimization is performed using a search algorithm taking overall thermal resistance as objective function. The thermal resistance is found to be more sensitive to channel width-to-depth ratio than fin width-to-depth of channel ratio.

  • PDF

An Experimental Studies on Heat Transfer and Friction Factor in a Square Channel with Varying Number of Ribbed Walls

  • Oh Se-Kyung;Kim Won-Cheol;Ahn Soo-Whan;Kang Ho-Keun;Kim Myoung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.281-289
    • /
    • 2005
  • An experimental study on the heat transfer and friction characteristics of a fully developed turbulent air flow in a square channel with $45^{\circ}$ inclined ribs on one, two, and four walls is reported. Tests were performed for Reynolds number ranging from 7,600 to 24,900. The pitch-to-rib height ratio, p/e, was kept at 8 and rib height-to-channel hydraulic diameter ratio, $e/D_h$, was kept at 0.0667. The heat transfer coefficient and friction factor values were enhanced with the increase in the number of ribbed walls. Results of this investigation could be used in various applications of internal channel turbulent flows involving different number of roughened walls.

Experimental and Numerical Study on the Binary Fluid Flows in a Micro Channel (마이크로 채널 내의 이상유동에 대한 실험 및 수치해석적 연구)

  • Park, Jae-Hyoun;Heo, Hyeung-Seok;Suh, Young-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.86-91
    • /
    • 2006
  • In this parer, we present the bubble forming and motion in the micro channel by using the two-dimensional numerical computation and experiment. In the numerical computation, The Lattice Boltzmann method(LBM) and free-energy model is used to treat the interfacial force and deformation of binary fluid system, drawn in to a micro channel and a numerical simulation is carried out by using the parallel computation method. The urn in this investigation is to examine the applicability of LBM to numerical analysis and experimental method of binary fluid separation and motion in the micro channel.

  • PDF

Sedimentary Facies and Evolution of the Cretaceous Deep-Sea Channel System in Magallanes Basin, Southern Chile (마젤란 분지의 백악기 심해저 하도 퇴적계의 퇴적상 및 진화)

  • Choe, Moon-Young;Sohn, Young-Kwan;Jo, Hyung-Rae;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.385-400
    • /
    • 2004
  • The Lago Sofia Conglomerate encased in the 2km thick hemipelagic mudstones and thinbedded turbidites of the Cretaceous Cerro Toro Formation, southern Chile, is a deposit of a gigantic submarine channel developed along a foredeep trough. It is hundreds of meters thick kilometers wide, and extends for more than 120km from north to south, representing one of the largest ancient submarine channels in the world. The channel deposits consist of four major facies, including stratified conglomerates (Facies A), massive or graded conglomerates (Facies B), normally graded conglomerates with intraformational megaclasts (Facies C), and thick-bedded massive sandstones (Facies D). Conglomerates of Facies A and B show laterally inclined stratification, foreset stratification, and hollow-fill structures, reminiscent of terrestrial fluvial deposits and are suggestive of highly competent gravelly turbidity currents. Facies C conglomerates are interpreted as deposits of composite or multiphase debris flows associated with preceding hyperconcentrated flows. Facies D sandstones indicate rapidly dissipating, sand-rich turbidity currents. The Lago Sofia Conglomerate occurs as isolated channel-fill bodies in the northern part of the study area, generally less than 100m thick, composed mainly of Facies C conglomerates and intercalated between much thicker fine-grained deposits. Paleocurrent data indicate sediment transport to the east and southeast. They are interpreted to represent tributaries of a larger submarine channel system, which joined to form a trunk channel to the south. The conglomerate in the southern part is more than 300 m thick, composed of subequal proportions of Facies A, B, and C conglomerates, and overlain by hundreds of m-thick turbidite sandstones (Facies D) with scarce intervening fine-grained deposits. It is interpreted as vertically stacked and interconnected channel bodies formed by a trunk channel confined along the axis of the foredeep trough. The channel bodies in the southern part are classified into 5 architectural elements on the basis of large-scale bed geometry and sedimentary facies: (1) stacked sheets, indicative of bedload deposition by turbidity currents and typical of broad gravel bars in terrestrial gravelly braided rivers, (2) laterally-inclined strata, suggestive of lateral accretion with respect to paleocurrent direction and related to spiral flows in curved channel segments around bars, (3) foreset strata, interpreted as the deposits of targe gravel dunes that have migrated downstream under quasi-steady turbidity currents, (4) hollow fills, which are filling thalwegs, minor channels, and local scours, and (5) mass-flow deposits of Facies C. The stacked sheets, laterally inclined strata, and hollow fills are laterally transitional to one another, reflecting juxtaposed geomorphic units of deep-sea channel systems. It is noticeable that the channel bodies in the southern part are of feet stacked toward the east, indicating eastward migration of the channel thalwegs. The laterally inclined strata also dip dominantly to the east. These features suggest that the trunk channel of the Lago Sofia submarine channel system gradually migrated eastward. The eastward channel migration is Interpreted to be due to tectonic forcing imposed by the subduction of an oceanic plate beneath the Andean Cordillera just to the west of the Lago Sofia submarine channel.

ESTIMATION OF THE MINIMUM INSTREAM FLOWS FOR THE RIVERLINE AESTHETICS ON THE KEUM RIVER

  • Lee, Joo-Heon;Jeong, Sang-Man;Hong, Il-Pyo;Lee, Eun-Tae
    • Water Engineering Research
    • /
    • v.1 no.4
    • /
    • pp.299-307
    • /
    • 2000
  • The method for estimating the minimum instream flows required for the riverline aesthetics, proposed by the Kim et al.(1996), has been applied to the main channel reach of the Keum river basin in Korea. To determine the minimum instream flows for eight main reaches at Keum river basin, six representative stations have been selected. This paper provides an analysis of influence on the riverline aesthetics, which is affected by change of physical components of river, by using the survey-based quantification method. The developed questionnaire based on the literature, and submitted to the 326 people who visited an each representative station. This surveying had been implemented in three times at each representative station and we had been selected a different flowrate at each implementation. The results of this analysis and survey have produced the relationship between the variation of physical components and riverline aesthetics. Survey results bout the flow comparison are summarized as follows. At the view of riverline aesthetics, most of the respondents re sensitive at the change of the flow velocity and they prefer high water level to low water level. Moreover whole respondents prefer to abundant stream flows and moderate flow velocity. The minimum flows for riverline aesthetics is estimated at each representative station by using the survey-based quantification method and the estimated results of some representative station are greater than mean monthly flow at each station. The result of the analysis appears that establishing minimum instream flows for riverline aesthetics is not only a technical problem but a legal problem. Therefore in the case of establishing the instream flows in the river, the estimated results have to be considered as relative standard.

  • PDF