• Title/Summary/Keyword: Channel allocation method

Search Result 196, Processing Time 0.029 seconds

A Reinforcement learning-based for Multi-user Task Offloading and Resource Allocation in MEC

  • Xiang, Tiange;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.45-47
    • /
    • 2022
  • Mobile edge computing (MEC), which enables mobile terminals to offload computational tasks to a server located at the user's edge, is considered an effective way to reduce the heavy computational burden and achieve efficient computational offloading. In this paper, we study a multi-user MEC system in which multiple user devices (UEs) can offload computation to the MEC server via a wireless channel. To solve the resource allocation and task offloading problem, we take the total cost of latency and energy consumption of all UEs as our optimization objective. To minimize the total cost of the considered MEC system, we propose an DRL-based method to solve the resource allocation problem in wireless MEC. Specifically, we propose a Asynchronous Advantage Actor-Critic (A3C)-based scheme. Asynchronous Advantage Actor-Critic (A3C) is applied to this framework and compared with DQN, and Double Q-Learning simulation results show that this scheme significantly reduces the total cost compared to other resource allocation schemes

Selection Based Cooperative Beamforming and Power Allocation for Relay Networks

  • Liu, Yi;Nie, Weiqing
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.377-384
    • /
    • 2011
  • Cooperative beamforming has previously been proven to be an efficient way to improve the cooperative diversity. This method generally requires all relay nodes to participate in beamforming, which can be seen as "all participate" cooperative beamforming. However, not all relay nodes have constructive impacts on the end-to-end bit error rate (BER) performance. Based on this observation, we propose a new cooperative scheme which only selects those "appropriate" relay nodes to perform cooperative beamforming. Such relay nodes can be simply determined with mean channel gains. Therefore, the selection complexity is significantly reduced as global instantaneous channel state information is not required. This scheme guarantees that energy is only allocated to the "appropriate" relay nodes, and hence provides superior diversity. We also prove that power allocation among source and selected relay nodes is a convex problem, and can be resolved with lower computational complexity. Simulation results demonstrate that our scheme achieves an essential improvement in terms of BER performance for both optimal and limited feedback scenarios, as well as high energy-efficiency for the energy-constrained networks.

Frequency divided group beamforming with sparse space-frequency code for above 6 GHz URLLC systems

  • Chanho Yoon;Woncheol Cho;Kapseok Chang;Young-Jo Ko
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.925-935
    • /
    • 2022
  • In this study, we propose a limited feedback-based frequency divided group beamforming with sparse space-frequency transmit diversity coded orthogonal frequency division multiplexing (OFDM) system for ultrareliable low latency communication (URLLC) scenario. The proposed scheme has several advantages over the traditional hybrid beamforming approach, including not requiring downlink channel state information for baseband precoding, supporting distributed multipoint transmission structures for diversity, and reducing beam sweeping latency with little uplink overhead. These are all positive aspects of physical layer characteristics intended for URLLC. It is suggested in the system to manage the multipoint transmission structure realized by distributed panels using a power allocation method based on cooperative game theory. Link-level simulations demonstrate that the proposed scheme offers reliability by achieving both higher diversity order and array gain in a nonline-of-sight channel of selectivity and limited spatial scattering.

Distributed Channel-Time Allocation for the Mesh Networking of the High-Rate WPAN (고속 WPAN의 Mesh 네트워킹을 위한 분산형 채널타임 할당)

  • Lee, Byung-Joo;Park, Moo-Sung;Rhee, Seung-Hyong;Choi, Woong-Chul;Chung, Kwang-Sue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.230-236
    • /
    • 2007
  • This paper presents a resource management mechanism for the mesh networking in IEEE 802.15.3 High-rate WPAN. IEEE 802.15 TGS is standardizing the MAC and PHY for mese networking. This task group researches the mechanism that are extension of network coverage without increasing transmit power of receive sensitivity, and studies the enhanced reliability via route redundancy. In this paper we propose the distributed resource management scheme that is fairly using the channel resource in the piconet without centralized piconet coordinator. Each DEV reserves the channel time and broadcasts its information. This scheme has unfairness for later associated DEV because of preoccupation of earlier associated DEVs. This paper presents the method that fairly allocates the channel time in MAC layer. And we evaluate the performance enhancement using simple simulations.

Performance Evaluation of the HIPERLAN Type 2 Media Access Control Protocol (HIPERLAN 타입 2 매체접근제어 프로토콜의 성능평가)

  • Cho, Kwang-Oh;Park, Chan;Lee, Jong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1B
    • /
    • pp.11-17
    • /
    • 2003
  • In this paper, we presented the dynamic random access channel allocation method under the priority based scheduling policy in order to improve the system performance of HIPERLAN/2 standardized by ETSI According to the scheduling policy, AP scheduler primarily allocates the resource to the collision MT This scheduling policy bring about decreasing the transmission delay of collision MT Dynamic RCH(random access channel) allocation method decreases the collision probability by increasing the number of RCH slots in case of low traffic. While it increases the maximum throughput by increasing the number of the data transmission slots in case of high traffic Therefore dynamic allocation method of RCH slots decreases the scheduling delay and increases the throughput When we evaluate the performance of presented method based on standards, we saw that the presented method improve the performance of the MAC protocol in terms of throughput and transmission delay.

Channel Allocation Method and Job scheduling Scheme by Property of Traffic in Cellular Network (이동통신에서 멀티미디어 트래픽 속성에 따른 채널 할당 방식과 작업 스케줄링 기법)

  • Heo Bo-Jin;Son Dong-Cheul;Kim Chang-Suk;Lee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.436-442
    • /
    • 2006
  • It is important matter that inflect well allocated frequency resource in cellular network and is still more serious element in environment that provide multimedia services. Also, that do that make job scheduling how base station system or terminal according to this service request is important constituent that evaluate performance of whole system. channel allocation according to service kind causes big effect to whole system when hand off gets up in cellular network. This paper describes model and algorithm that increase two elements that is frequency allocation and job scheduling that consider multimedia service traffic special quality by emphasis that do mapping present in CDMA cellular system.

Resource Allocation based on Quantized Feedback for TDMA Wireless Mesh Networks

  • Xu, Lei;Tang, Zhen-Min;Li, Ya-Ping;Yang, Yu-Wang;Lan, Shao-Hua;Lv, Tong-Ming
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.160-167
    • /
    • 2013
  • Resource allocation based on quantized feedback plays a critical role in wireless mesh networks with a time division multiple access (TDMA) physical layer. In this study, a resource allocation problem was formulated based on quantized feedback for TDMA wireless mesh networks that minimize the total transmission power. Three steps were taken to solve the optimization problem. In the first step, the codebook of the power, rate and equivalent channel quantization threshold was designed. In the second step, the timeslot allocation criterion was deduced using the primal-dual method. In the third step, a resource allocation scheme was developed based on quantized feedback using the stochastic optimization tool. The simulation results show that the proposed scheme not only reduces the total transmission power, but also has the advantage of quantized feedback.

  • PDF

Resource allocation algorithm for space-based LEO satellite network based on satellite association

  • Baochao Liu;Lina Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1638-1658
    • /
    • 2024
  • As a crucial development direction for the sixth generation of mobile communication networks (6G), Low Earth Orbit (LEO) satellite networks exhibit characteristics such as low latency, seamless coverage, and high bandwidth. However, the frequent changes in the topology of LEO satellite networks complicate communication between satellites, and satellite power resources are limited. To fully utilize resources on satellites, it is essential to determine the association between satellites before power allocation. To effectively address the satellite association problem in LEO satellite networks, this paper proposes a satellite association-based resource allocation algorithm. The algorithm comprehensively considers the throughput of the satellite network and the fairness associated with satellite correlation. It formulates an objective function with logarithmic utility by taking the logarithm and summing the satellite channel capacities. This aims to maximize the sum of logarithmic utility while promoting the selection of fewer associated satellites for forwarding satellites, thereby enhancing the fairness of satellite association. The problems of satellite association and power allocation are solved under constraints on resources and transmission rates, maximizing the logarithmic utility function. The paper employs an improved Kuhn-Munkres (KM) algorithm to solve the satellite association problem and determine the correlation between satellites. Based on the satellite association results, the paper uses the Lagrangian dual method to solve the power allocation problem. Simulation results demonstrate that the proposed algorithm enhances the fairness of satellite association, optimizes resource utilization, and effectively improves the throughput of LEO satellite networks.

Coordinated Multi-Point Communications with Channel Selection for In-building Small-cell Networks (건물 내 스몰셀 네트워크에서 채널 선택 기반 다중점 협력통신)

  • Ban, Ilhak;Kim, Se-Jin
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.9-15
    • /
    • 2022
  • This paper proposes a coordinated multi-point communication (CoMP) method with channel selection to improve performance of a macro user equipment (MUE) in a dense small-cell network environment in a building located within coverage of a macro base station (MBS). In the proposed CoMP method, in order to improve the performance of the MUE located in the building, A small-cell base station (SBS) selects a channel with lower interference to the neighboring MUE and transmits appropriate signals to the MUE requiring CoMP. Simulation results show that the proposed CoMP method improves the performance of the MUE by up to 164% and 51%, respectivley, compared to a random channel allocation based traditional SBS network and CoMP method.

Self-organized Spectrum Access in Small-cell Networks with Dynamic Loads

  • Wu, Ducheng;Wu, Qihui;Xu, Yuhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.1976-1997
    • /
    • 2016
  • This paper investigates the problem of co-tier interference mitigation for dynamic small- cell networks, in which the load of each small-cell varies with the number of active associated small-cell users (SUs). Due to the fact that most small-cell base stations (SBSs) are deployed in an ad-hoc manner, the problem of reducing co-tier interference caused by dynamic loads in a distributed fashion is quite challenging. First, we propose a new distributed channel allocation method for small-cells with dynamic loads and define a dynamic interference graph. Based on this approach, we formulate the problem as a dynamic interference graph game and prove that the game is a potential game and has at least one pure strategy Nash equilibrium (NE) point. Moreover, we show that the best pure strategy NE point minimizes the expectation of the aggregate dynamic co-tier interference in the small-cell network. A distributed dynamic learning algorithm is then designed to achieve NE of the game, in which each SBS is unaware of the probability distributions of its own and other SBSs' dynamic loads. Simulation results show that the proposed approach can mitigate dynamic co-tier interference effectively and significantly outperform random channel selection.