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Abstract 
Mobile edge computing (MEC), which enables mobile terminals to offload computational tasks to a server located at the user's 

edge, is considered an effective way to reduce the heavy computational burden and achieve efficient computational offloading. 
In this paper, we study a multi-user MEC system in which multiple user devices (UEs) can offload computation to the MEC 
server via a wireless channel. To solve the resource allocation and task offloading problem, we take the total cost of latency and 
energy consumption of all UEs as our optimization objective. To minimize the total cost of the considered MEC system, we 
propose an DRL-based method to solve the resource allocation problem in wireless MEC. Specifically, we propose a 
Asynchronous Advantage Actor-Critic (A3C)-based scheme. Asynchronous Advantage Actor-Critic (A3C) is applied to this 
framework and compared with DQN, and Double Q-Learning simulation results show that this scheme significantly reduces the 
total cost compared to other resource allocation schemes 

Ⅰ. Introduction 
So far time delay and energy consumption are usually used 

as the measurement indexes for computing the performance 
of unloading . According to the two performance 
standards of time delay and energy consumption, there are 
three solutions: the scheme of minimizing delay, the scheme 
of minimizing energy consumption and the scheme of 
minimizing the total cost [2] Solutions to minimize latency: 
Design a reasonable offload strategy to minimize latency on 
mobile devices. In Ref. [3] a low-complexity online Lyapunov 
optimization-based dynamic computation offloading 
(LODCO) algorithm is proposed. The LODCO algorithm 
makes an offload decision in each slot and then allocates CPU 
cycles to the UE (executed locally) or transmit power 
(offloaded to the MEC), which results in a 64% reduction in 
runtime. for energy minimization scheme In Ref. [4] A novel 
software defined edge cloudlet (SDEC) based RL 
optimization framework is proposed in this paper to tackle 
the energy minimization problem in wireless MEC. 
Specifically, Q-learning and cooperative Q-learning based 
RL schemes are proposed for the intractable problem. 
Simulation results reveal that the proposed scheme achieves 
superior performance in saving the battery power of a user 
device compared to other benchmark methods such as Q-
learning with a random algorithm and Q-learning with 
epsilon greedy. total cost minimization scheme In Ref. [5] 
Specifically, the Q-learning based, and Deep Reinforcement 
Learning (DRL) based schemes are proposed. A weighted 
sum designed to minimize latency and energy consumption

Motivated by the analysis, in this paper, we propose a 
computing offloading policy based on the A3C algorithm to 
minimize the sum cost. where each UE is composed of two 
deep neural networks: one is used as the function 
approximator to estimate the value functions in the critic part, 
and the other is used as a parameterized stochastic policy in 
the actor part. The multiple UE are trained asynchronously 
using policy gradient algorithm. From the final result, the 
proposed A3C algorithm outperforms the traditional DRL 

(DQN) algorithm In section III we propose an A3C-based 
theme-based theme in detail. In Section IV, we show the 
simulation results. Finally, the conclusion is drawn in Section 
V 

 
II. System Model 

A. Network Model 
A mobile edge offloading system is shown in Fig. 1 

premeditate a single-cell scenario with an station and K UEs 
are represented as K= {1,2………K} each UE will generate 
only one computation-intensive task, Each UE could offload 
the task to the MEC server through wireless or execute it 
locally 

                  
                  Fig1: Network Mode 
 

Assume that each UE has an computing intensive task to be 
processed represented as (Bk, Ck DT). Here Bk is size of 
computation input data and Ck the total number of CPU 
cycles required to process the task   . DT is the maximum 
latency tolerance. which means that the task execution time 
should not exceed DT, whether the task is executed either 
locally or by computation offloading. 

Moreover, we only concentrate on executing locally or 
offloading the task to the MEC server in this article, assume 
the task cannot be divided into partitions to be processed on 
different devices, which means that each UE should execute 
its task by local computing or offloading computing. We use 
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binary variables = {0,1}to define offloading decisions 
where =0 means the task is processed by UE ’s CPU locally, 
and =1 indicates the task is offloaded to the MEC server.  
 

Define W as the bandwidth of wireless channel. There is 
only one eNB in one small cell, so the interval interference is 
neglected. It's assumed that if multiple UEs choose to offload 
the task simultaneously, the wireless bandwidth would be 
equally allocated to the offloading UEs for uploading data. 
the achievable upload data rate for UE k is  

   = ) 1  

where K is the number of offloading UEs,  is the 
transmission power of UE k for uploading data,  is the 
channel gain of UE k in the wireless channel, N0 is the 
variance of complex white Gaussian channel noise. 

Task model and Calculation model:
If UEk chooses to execute its task m locally, the local 

computing only includes the delay of offloading task to the 
CPU. here Tm the local computing delay Then be the 
computation capability of the mobile device. The local 
execution delay of task m is  the computational 
energy  Where  represents the energy consumption 
per CPU cycle to complete task m We set =  
according to the practical measurement proposed in [6] 

=  (2)                                                                                

= *   
if UE chooses to offload the task to the MEC server for 

processing, then the total cost includes the delay and energy 
consumption of task upload and task processing. Set  as 
the data upload rate of the wireless channel when the subtask 
is uploaded, the calculation formula is as follows 

=  4  

= * = 5  

=  

= *  = 
 Where  is defined as the allocated computational 

resource When the task is executed on the MEC, UE k stays 
idle and define the power consumption of the idle state as . 

According to the (2–7), he total cost of all tasks in the 
system can be expressed as: 

=
(8) 

 
Where  and  represent the weights of time and energy 

cost of task k. y 0<  0<  
 
C. Problem Formulation: 

The objective of this paper is to minimize the sum cost of 
task offloading for all UEs, Under the constrain of maximum 
tolerable delay and computation capacity, the problem is 
formulated as follows: 

min   (9) 

C1:  k K 

C2:  < DT       k K

C3:     k K 

C4:     0< <      k K 
Constraints C1 indicate that each UE can only choose one 

mode to complete the task. Constraints C2 indicates that 
either executed by local computing or offloading computing, 
the time cost should not exceed the maximum tolerable delay. 
Constraints C3 and C4 describe the total computation 
resources limitation of MEC. obviously, the objective 
function of problem (11) is not convex, and it is a NP-hard 
problem [6] such problems are hard to find the optimal 
solution.  In order to solve this problem, we propose 
reinforcement learning methods, to find the optimal 
offloading and resource allocation strategy for each UE 

 
III. Problem Solution 

A.Reinforcement learning methods 
 In order to minimize the sum cost of task offloading for all 
UEs, we propose an A3C-based computing offloading policy, 
A3C [7] adopts asynchronous training method to reduce the 
correlation between data, which avoids the lack of experience 
playback mechanism, and improves the convergence speed by 
making full use of the advantages of multithreading. In this 
section, we firstly define the specific state, action and reward 
of the agent in detail Then, we introduce the proposed scheme 
which includes the computing offloading policy based on A3C 
algorithm. 
 
B. Three key elements for DRL 

There are three key elements in the reinforcement learning 
method, namely state, action, reward, specifically to the 
system model in this article: 

State: The system state includes 2 parts of s = (ec, ac). We 
define ec as the sum cost of the entire system and the available 
computational capability ac of the MEC server which can be 
computed as ac= -  

Action: The action consists of 2 parts respectively the 
offloading decision of kUEs A = [α1, α2, . . . , αk] and the 
available computational capability f = [f1,f2, . . . , fk ]  

Reward: After executing each possible action a in each step, 
the agent will get a reward R (s, a) in a certain state The agent 
can estimate the expected reward for each state-action pair 
and choose the action that maximizes the reward. the reward 
function should be related to the objective function. Our 
objective is to meet the minimal sum cost and the goal of RL 
is get the maximum reward so the value of reward should be 
negatively correlated to the size of the sum cost. In this system 
the immediate reward can be defined as   
Where  is the sum cost of all tasks executed by local 

computing and  gives the actual sum cost of current state 
 
C. A3C Algorithm  
At each time slot t, the environment is in state  and the 

estimated state value is
e en
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+1 under certain probabilities, and the agent will 

receive a reward . The state value function of A3C is given 
by 

V(V(( ;θv) =E [Rt | s= ,π]=E[ s= ,π] 
Then, the advantage function is defined as: 

A ( , ;θ, θv) = Rt −V( ;θv), 
On the basis of advantage function At, the loss function of 

the actor is given by 
   fπ(θ)=logπ( | ;θ)(Rt −V( ; θv))+βH(π( ;θ)) 

where H(π( ;θ)) is an entropy item used for encouraging 
exploration in training procedure and thus to avoid possible 
premature convergence, and β is a parameter used to control 
the strength of the entropy regularization and thus to 
facilitate the tradeoff between exploration and exploitation. 
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On the other hand, the loss function associated with the 
outputs of the critic network is given by 

fv(θv) =(Rt−V( ;θv))2 

Therefore, the iterative formulas of Actor and Critic are 
respectively:  

dθ←dθ+ θ′logπ( | ;θ′)(Rt−V( ;θv))+δ θ′H(π( ; θ′)) 

dθv←dθv+  

IV. Simulation Results 
In this section, we present the simulation results to evaluate 

the performance of the proposed scheme. We consider that in 
a wireless network scenario with a network bandwidth of = 
10 , each mobile device is randomly distributed within 
the coverage area. The UEs are randomly scattered within 
200m distance away from the eNB. The computation capacity 
of the MEC server is =5 / , the maximum CPU 
frequency of mobile devices =1 / , and the power during 
transmission and waiting are respectively 500 , 

=100 . [8] And we assume that the data size of the 
computation offloading Bk (in kbits) obeys uniform 
distribution between (300, 500), the number of CPU cycles Ck 
(in Megacycles) obeys uniform distribution between 
(900,1100). The decision weight of each UE is set to be 

= =0.5.  
This article will obtain the results through simulation 

experiments, and reflect the weighted sum of energy 
consumption and delay in algorithms and strategies such as 
Full Local, Full Offload, A3C, DQN and Double Q-learning 

 We first present the sum cost of the MEC system with an 
increasing total number of UEs in Fig. 2 when the number of 
users continues to increase, the total cost of all methods is 
increasing, but under the same conditions, the total cost of the 
A3C method system is the smallest, then the DQN and Double 
Q-learning follows with a small gap, the performance of these 
three methods are relatively stable. 

          
Fig. 2, Sum cost versus the number of UE  

As shown in Fig.3, the number of UE is 10. The A3C 
method gives the best results, the sum costs of all methods 
increase with the increasing data size of offloading task, 
because bigger data size leads to more time and energy 
consumptions for offloading  

                  

      Fig. 3, Sum cost versus the data size of task 

As shown in Figure 4, the number of UE is 5. The A3C 
method gives the best results when the computing power of 
the MEC server is too small, the total cost of as the computing 

power of the MEC increases, the total cost of completely 
offloading the system drops rapidly and the performance of 
these offloading methods is almost the same. This shows that 
when MEC has enough computing power, the problem of 
resource allocation will be weakened, and the superiority of 
DRL method will no longer be prominent. 

 

Fig4. Sum cost versus the capacity of the MEC serve 
V. Conclusion 

In this paper, we presented an integrated framework for 
multi-user computation offloading and resource allocation 
with mobile edge computing. From the results of the above 
simulation experiments, the A3C method, has a better 
performance in the computational offloading system than the 
methods. It also shows that increasing enhancing the 
computing power of edge servers can effectively reduce the 
total cost of the system and the total cost of the system 
increases as the amount of task data increases. 
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