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Abstract 
 

This paper investigates the problem of co-tier interference mitigation for dynamic small- cell 
networks, in which the load of each small-cell varies with the number of active associated 
small-cell users (SUs). Due to the fact that most small-cell base stations (SBSs) are deployed 
in an ad-hoc manner, the problem of reducing co-tier interference caused by dynamic loads in 
a distributed fashion is quite challenging. First, we propose a new distributed channel 
allocation method for small-cells with dynamic loads and define a dynamic interference graph. 
Based on this approach, we formulate the problem as a dynamic interference graph game and 
prove that the game is a potential game and has at least one pure strategy Nash equilibrium 
(NE) point. Moreover, we show that the best pure strategy NE point minimizes the expectation 
of the aggregate dynamic co-tier interference in the small-cell network. A distributed dynamic 
learning algorithm is then designed to achieve NE of the game, in which each SBS is unaware 
of the probability distributions of its own and other SBSs’ dynamic loads. Simulation results 
show that the proposed approach can mitigate dynamic co-tier interference effectively and 
significantly outperform random channel selection. 
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1. Introduction 

Small-cell  base stations (SBSs) are low-power short-range base stations that provide 
wireless services to users. Small-cell technologies can greatly improve radio resource reuse 
efficiency and are seen as one of the most promising solutions for the rapid growth of wireless 
data services and which could prove useful in satisfying the requirement of ubiquitous access  
[1-4]. When the number of SBSs in a given area is increased, a need arises for the mitigation of 
co-tier interference to exploit the benefits promised this technology  [5, 6]. However, as most 
SBSs are deployed with minimum intervention from end users and service providers, 
centralized resource allocation is difficult to achieve. In this paper, we focus on 
self-organizing spectrum allocation for small-cell networks under the constraint of mitigating 
co-tier interference. 

There are some existing distributed spectrum allocation solutions, using e.g., 
reinforcement-learning based approaches [7], hierarchical dynamical games [8] and 
evolutionary games [9]. However, most existing works assume that there is only one terminal 
user associated with each small-cell and the user remains in contact  with its associated SBS all 
the time. In practice, in small-cell networks, more than one user can associate with each SBS 
and may connect or disconnect with their corresponding SBSs according to their specific 
service demand at non-deterministic moments in time [10]. Thus, the loads (number of active 
SUs) of small-cells may change dynamically and vary widely within certain (short) time 
periods . This paper focuses on the intractable problem of spectrum allocation for different and 
dynamic loads of small-cells. 

In this paper, we resort to a game theory-based self-organizing approach to allocate 
channels among the SBSs. This approach is based on the following assumptions: first, there is 
no centralized controller and, second, the small-cells make decisions selfishly and 
autonomously. Due to the dynamics of the loads, the existing fixed- channel allocation method, 
in which each SU is allocated a fixed channel for each small-cell, is not  applicable  when the 
number of users is larger than the number of dedicated channels. What's more, considering the 
dynamics of SU loads , channels with low interference will not  be used efficiently when the 
SUs who occupy these channels are inactive. Thus, we propose a new distributed channel 
allocation method with different channel priorities, which can be apllied in overload situations 
without regard to serving queues and buffers. In the proposed channel allocation method, 
channels are not allocated to specific SUs, and channels with lower interference are given a 
higher priority for use by active SUs. With this approach, the self-organized spectrum access 
with dynamic loads can be modeled as a sequential channel set selection problem. Therewith, 
we employ a dynamic interference graph to analyze the dynamic interference that occurs 
among the small-cells when the proposed channel allocation methods are applied . 
Subsequently, a dynamic interference graph game is formulated to mitigate the dynamic 
co-tier interference. In the proposed game, each player (SBS) tries to minimize the expectation 
of the received interference in selected channels. 

Our main contributions can be summarized as follows: 
 We investigate distributed channel allocation in dynamic small-cell networks, where the 

loads of the cells vary dynamically. We propose a new distributed channel allocation 
method for small-cells with dynamic loads.  

 A dynamic interference graph is defined to analyze  the interference caused by SUs 
connecting or disconnecting dynamically in each small-cell. The problem is formulated 
as an optimization of sequential channel sets selection under the constraint of 
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minimizing the expectation of dynamic co-tier interference. 
 We propose a game-based approach to allocate channels to small-cells with dynamic 

loads based on the defined dynamic interference graph. The utility function of each 
small-cell is defined as the sum of the received interference expectation in selected 
channels. We furthermore prove that the game is a potential game and has at least one 
pure strategy Nash equilibrium (NE) point. Moreover, the best pure strategy NE point 
minimizes the expectation of the aggregate dynamic co-tier interference in the 
small-cell  network. 

 We design a distributed dynamic learning algorithm to achieve Nash equilibria for the 
game, in which each SBS is not aware of  the probability distributions of its own and the 
others' dynamic loads. 
 

The rest of this article is organized as follows. In Section 2, we review the related work. In 
Section 3, we present the system model and problem formulation. In Section 4, we propose a 
dynamic interference graph game and analyze the existence of Nash equilibria. In Section 5, 
we propose a distributed dynamic learning algorithm and present simulation results. Finally, 
Section 6 presents our conclusions and summarizes our findings 

2. Related Work 
The problem of resource allocation and co-tier interference mitigation in small-cell 

networks has been investigated widely [11-14]. In many existing works [15-17], a central 
management system or controller is necessary for handling resource allocation and 
interference mitigation, which leads to significant signaling overhead between the controller 
and the small-cells. In [15], the authors utilized  a femtocell management system to avoid 
co-channel and co-tier interference. In [16], the authors proposed a semi-centralized 
interference management scheme, which was based on joint clustering and resource allocation 
for small-cells. However, it is difficult to implement centralized controlling or planning to 
allocate resources  because most small-cells are deployed in an ad-hoc manner with minimum 
intervention from the end users and the service providers.  

Some researchers applied different game models to solve this problem in a distributed 
manner, e.g., coalition games [18, 19], evolutionary games [20], Bargaining games [21] and 
graphical games [22-25]. In [18], a coalition game model was used to enable small-cells to 
cooperate with each other for sharing resources and managing interference. In [22], the authors 
applied a graph-based model to characterize the MAC-layer interference relationship among 
the cells. In [23], the authors proposed two special cases of local cooperative game to study the 
problem of opportunistic spectrum access, in which the users need to exchange information 
with their neighboring users. In [24], the authors investigated the problem of channel selection 
for MAC-layer interference mitigation with a proposed dynamic graphic game in the dynamic 
and distributed environment. However, in [22-25] , they assumed that one cell can only select 
one channel to transmit. Moreover, the proposed MAC-layer interference is not suitable for 
the small-cell networks without the multiple access control mechanisms, such as CSMA and 
Aloha. 

All the aforementioned works have paid less attention on the dynamic loads of small-cells. 
It should be pointed out that [10, 26, 27] have conducted some preliminary researches on 
load-aware spectrum access for small-cell networks. However, even in [10, 26], it is assumed 
that the loads of small-cells are static and unchanged. In [27], the authors resorted to a convex 
optimization approach to maximise the energy efficiency of dynamic wireless networks. In 
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practice, in small-cell networks, the loads and channels requested of the cells change 
dynamically and may vary widely during a particular (short) time period. In this paper, we 
propose a fully distributed and self-organizing spectrum access approach with dynamic loads 
in small-cell networks. 

3. System Model and Problem Formulation 

3.1 System model 
Let us consider a small-cell network (SCN), where small-cell base stations (SBSs) are 

independently deployed in random locations. Small-cells transmit on orthogonal channels 
compared to macro-cells, thus cross-tier interference is avoided in such networks. In this paper, 
we will only consider co-tier interference. It is assumed that there are N  small-cells, i.e. 

{1,2, , }N= … , and there are M  dedicated channels available for each small-cell to 
transmit, i.e. {1, , }M= … . Each cell n  offers traffic services to nK  small-cell users 
(SUs). It is assumed that the transmission link between SBS n  and a SU only occupies one 
channel at each (short) time period. In this paper, we only consider downlink transmission. 

It is assumed that each SU may be in one of two states, namely "Active" (A) and "Sleep" (S).  
In the "Active" state, a SU receives data from its associated small-cell, while, in the "Sleep" 
state, the SU has no communication demand and does not occupy any channels to 
communicate with the associated small-cell . The "Active-Sleep" model can be represented by 
a simple two-state Markov chain. Taking an arbitrary chosen SU as an example, its two-state 
Markov chain is shown in Fig. 1. The state transition probabilities ( , , ,AA AS SA SSp p p p ) of 
each SU are different and fixed. Thus, it can be concluded that the probabilities of each SU in 
each small-cell being active (α ) or sleep (β ) are fixed and different, with 1α β+ = . 

Active Sleep
AAp

ASp

SAp

SSp

 
Fig. 1. Two-state Markov chain of an arbitrary chosen SU. 

 

Because the probability of a SU being active is fixed, we can conclude that the probability 
of the event, in which a small-cell n  serves h  active SUs and requires h  channels to meet 
the instantaneous load, is fixed. The corresponing  probability nhθ  can be expressed as 

| |

,
A A S

n ni n nj n

nh ni nj
h su su

θ α β
= ∈ ∈

= ∑ ∏ ∏
  

                                                    (1) 

 
where A

n  is the active SU set in small-cell n  and S
n  is the sleeping SU set, and nisu is 
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the i th small-cell user associated with small-cell n . It is clear that 
0

1
nK

nh
h
θ

=

=∑ . 

 
Considering that the load in each small-cell n  changes dynamically according to{ }nhθ , we 

propose a distributed channel allocation method for small-cells with dynamic loads. In this 
method, each small-cell n  selects a sequential channel set to transmit, which can be expressed 
as 

 
1 2{ , , , },

nn n n nZC c c c= …                                                             (2) 
 

where min{ , }n nZ K M= , and nkc ∈ , 0 nk Z< ≤ . Small-cell n  will prioritize these nZ  
selected dedicated channels. At any moment,  each active SU can occupy an idle channel in the 
ordered channel set nC  instead of occupying a particular channel in each time period. 

More specifically, for channels k  and k′  belonging to the nZ  selected channels available 
for the small-cell n , if k k′< , we say that for the cell n , nkc  has a higher priority to be used 
for transmission than nkc ′ . In other words, with i  active SUs in small-cell n  at a particular 
time period, the first i  channels in nC , i.e. the i  channels with the highest priority, will be 
picked out for transmission. Thus, to achieve good performance, channels with lower 
interference should be given a higher priority. The distribute channel allocation needs 
temporary access control provided by SBSs when the loads change. 

Then, we can conclude that the probability of channel nkc   being used to transmit by 
small-cell n  is given by: 

.
nK

nk nh
h k

ϑ θ
=

=∑                                                               (3) 

 
It is clear that 11

nn nKϑ ϑ≥ ≥…≥ . The ordering of the transmission probability of each 

channel is consistent with the corresponding priorities. In particular, when ( )nkc m m= ∈ , 

we set nkc m
nk n nϑ ϑ ϑ= = . For a small-cell n , the probability set of each channel nkc  ( nk nc C∈ ) 

being occupied for transmission is represented as 
 

1 2{ , , , }.
nn n n nZϑ ϑ ϑΘ = …                                                      (4) 

 
With the sequential channel set of each small-cell selected, we can examine how the 

interference among the small-cells varies with the dynamic loads. The statistical dynamic 
interference relationship can be depicted using a dynamic interference graph. Such a graph of 
a small-cell network with three small-cells is shown in Fig. 2. It is noted from Fig. 2 that, 
small-cells 1 and 3 will only interfere with each other when they both transmit information in 
channel 3 simultaneously. For example, the probability that small-cell 1 and 3 interfere with 
each other in channel 3 is 3 3

1 3ϑ ϑ× . 
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Fig. 2. An dynamic interference graph of the considered small-cell network with three small-cells. 
 
 

To take a simple specific example, we assume that the distance between any two small-cells 
and the SBSs’ transmission power in Fig. 2 are the same. Thus, when any two small-cells 
transmit in the same channel simultaneously, the received interference in both these 
small-cells is the same and can be denoted as . Let us assume that the active probabilities of 
SUs in these 3 small-cells are ,  and 

. Then, based on (3), we have , 
 and . With the channel sets for cells 1 and 3 being  

 and  respectively, the interference probability in channel 3 
between small-cell 1 and small-cell 3 is . The average interference 
affecting SBS 2 in channels 1, 2 and 3 are then calculated as .  

Thus, the sequential channel set of small-cell 2 should be . For 
small-cell 2, a diagram illustrating the dynamic load and the channel selection based on that 
load is shown in Fig. 3. The loads of small-cell 2 in six time periods are assumed to be 

. As seen in the diagram, the utilization of channel 2 is the highest, while the 
utilization of channel 3 is the lowest. That is because the interference in channel 2 is the lowest, 
while the interference in channel 3 is the highest. Considering the dynamics of loads in 
small-cells, instead of allocating fixed channels to certain SUs, the proposed distributed 
channel allocation method with different channel priority will make most use of the channels 
that have low interference. 
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Fig. 3. An diagram illustrating dynamic load and channel selection based on that load.. 

 
According to the dynamic interference graph, the interference can be quantified in a 

statistical manner, and the average interference among small-cells can be calculated. This will 
be further elaborated in the following subsection. 

3.2 Problem formulation 
Customarily, channel allocation is performed according to the detected instantaneous 

channel gains of the SUs. However, due to the mobility and activity of SUs, this assumption is 
performed. Also, the monitoring of instantaneous channel gains of the SUs will lead to 
extensive signaling and huge amount of information transmission overhead. In our model, the 
average channel gains measured by SBSs are used for channel allocation, similar to [15]. Each 
small-cell performs downlink measurements of interference signal and noise power levels in 
each available channel. Since SUs are usually located very closely to the serving SBSs and can 
move around the serving SBSs, it can be assumed that the average channel gain between a SBS 
n  and a SU nsu ′ , served by another SBS n′ , can be approximated by the channel gain 

between the two SBSs ( n  and n′ ), i.e. , ,n

m m
su n n ng g

′ ′=  [15]. Following this assumption, it can 

be deduced that channel gains are symmetric, i.e. , , , ,n n

m m m m
su n n n n n su ng g g g

′ ′ ′ ′= = = , for two SBSs 

n , n′  and two SUs nsu , nsu ′ . 
Let us assumed that the channel subset being occupied by SBS n  at time t  is denoted as 

1 2( ) { , , , }n n n nlC t c c c= … , ( )n nC t C⊂ . The instantaneous received interference signal 
power1 by SBS n  in each channel ( ( ))nm m C t∈  can be approximated by: 

{ }
( ) , ( )

( )
0, ( ),    

m
im im in n

i n
nm

n

t p g m C t
I t

m C t

δ
∈ −

 ∈= 
 ∉

∑
                                      (5) 

1The co-tier interference from some SBSs, which are not close to SBS n , can be catered by assuming them as a part 
of thermal noise as shown in [28] due to the low transmission power of small-cells. The remaining SBSs interfering 
with SBS n which can be defined as { }int: , ,n inJ i d D i i n= < ∈ ≠ , where ind  is the distance between SBS i  and 

SBS n , intD  is the defined interferce distance. Then, we can replace { }i n∈ −  by ni J∈  in (5), and the 
dynamic interferences can be more tractable with the following approach. 
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where m
ing  represents the average channel gain between SBS i  and n  in channel m , imp   

represents the transmission power of SBS i , and ( )im tδ  is the following interference indicator 
function: 

1, ( )
( )

0, ( ).
i

im
i

m C t
t

m C t
δ

∈
=  ∉

                                                   (6) 

Following many previous studies which focus on small-cell networks, we consider m
ing  to be 

mainly determined by the transmission distance, in which case m
in ing g= .  To facilitate the 

analysis, we do not consider power control and assume that the transmission power of the 
SBSs in each channel is the same, i.e. imp p= . The proposed approach can also be applied in 
cases where the transmission transmit power is arbitrary and fixed. 

The achieved instantaneous throughput of SBS n  in channel m  is 

0 2 2

( )log (1 ),
( )

n
nm

nm

pg tr B
I t σ

= +
+

                                            (7) 

where ( )ng t  is the instantaneous channel gain between SBS n  and the active SU at time t , 
2σ  is the background noise, and 0B  is the bandwidth of each channel. Due to the mobility 

and activity of SUs, it is too hard to monitor the instantaneous channel gain ( )ng t . What's 
more, considering the received instantaneous interference, it is also difficult to calculate the 
instantaneous throughput or the average throughput. On the other hand, it is feasible to 
calculate the average interference of SBS n  in each channel over a relatively long period of 
time. It is clear that each SBS will prefer to give higher priority to channels with lower average 
interference in order to increase its servicing capacity. 
 

Suppose that ( , )n nC C−  is the sequential channel set selection profile of the small-cell 
network, where nC−  is the sequential channel set selection profile of other SBSs. The  average 
interference by SBS n  in channel m  can be described as: 

{ }1

1lim ( ) .
T

nm im inT t i n
I t pg

T
δ

→+∞
= ∈ −

= ∑ ∑


                                            (8) 

It can be assumed that for each SBS i  with channel { }im C′∈ − , we will have 

( ) 0,im t tδ ′ = ∀  and 0m
iϑ
′ = . Thus, (8) can be rewritten as: 

{ }
.m

nm i in
i n

I pgϑ
∈ −

= ∑


                                                     (9) 

Because the probability that SBS n  occupies channel nkm c=  to transmit its signal is nkϑ   

( m
nk nϑ ϑ= ), the received average aggregate interference of n , when having a candidate 

channel set nC  can be expressed as: 

( , ) .
nk

nk n

n n n nk nc
c C

s C C Iϑ−
∈

= ∑                                                 (10) 

The optimization goal for each small-cell is to minimize its average aggregate interference. 
Accordingly, a quantitative expression of the average network interference level is given by 



1984                                                        Wu et al.: Self-organized Spectrum Access in Small-cell Networks with Dynamic Loads 

the following equation: 

1
( ) ( , ).

N

n n n
n

U C s C C−
=

=∑                                                    (11) 

The average network interference level reflects the expectation of the aggregate dynamic 
co-tier interference of the network. Thus, the global objective is as follows: 

( 1) arg min ( ).optC U C=                                                (12) 
This is challenging to achieve due to the dynamics of the small-cells’ loads and the 

incomplete information constraint, i.e. i) the total number of SUs associated with each SBS is 
fixed, but the number of active SUs (the instantaneous load) is time-varying and the 
probability distribution of the dynamic load of each SBS is unknown, ii) there is no central 
controller and information exchange among the SBSs, which leads to each SBS not being 
aware of the chosen sequential channel sets and the probability distributions of loads of other 
SBSs. Without centralized management, we propose a distributed approach with incomplete 
information to solve this problem. 

4. A Dynamic Interference Graph Game Approach for Sequential 
Channel Set Selection 

Game theory is a potentially effective distributed approach towards handling the above 
problem without a central controller and complete global information. In this paper, we 
formulate this problem as a dynamic interference graph game, in which each player (i.e. each 
SBS) forms its spectrum access strategy in a distributed and autonomous manner.  

4.1 Game model 

We shall denote the dynamic interference graph game as { , ( ) , ( ) }I n n n nG u∈ ∈=    , 
where {1,2, , }N= …  is the set of SBSs, n  is the strategy space of SBS n , with 

n nC ∈ . nu  is the utility function of each player n , which is the inverse of the received 
average aggregate interference of SBS n , and can be expressed as:  

( , ) ( , ).n n n n n nu C C s C C− −= −                                               (13) 
Then the noncooperative dynamic interference graph game is expressed as follows: 

( ) : max ( , ) .
n n

I n n nC
G u C C n−∈

∀ ∈


                                        (14) 

According to (14), it is expected that each SBS prefers to choose the channels with the 
lowest average interference to maximize the capacity of the small-cell. In other words, we can 
get nZ  channels with the lowest average interference for each SBS n  by solving (14), i.e. 
minimizing SBS n 's received average aggregate interference in all selected channels. Let us 
consider a scenario where the sequential channel set selection profile of other players nC−  is 
fixed, in which case we have the following theorem. 

 
Theorem 1: For each SBS n  withae fixed nC− , for * arg max ( , )

n
n n n n

C
C u C C−= , where 

* * * *
1 2{ , , , }

nn n n nZC c c c= … , then we have { }* *
1

*,
n nZn

nm nnc nc
I I I m C′ ′≤…≤ ≤ ∀ ∈ − . 
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Proof: i) If h k∃ >  ( * * *,nk nh nc c C∈ ), we have * *
nk nhnc nc

I I> . For 1{ , , }
nn n nZC c c′ ′ ′= … , which is 

obtained by exchanging the positions of *
nkc  and *

nhc  in *
nC , there have *

nj njc c′= , 
* *( { , })nj n nk nhc C c c′ ′∀ ∈ − , *

nk nhc c′=  and *
nh nkc c′= . Then based on (10), we obtain: 

* *

* *

*( , ) ( , )
( )

( )( ) 0.
nk nhnk nh

nk nh

n n n n n n

nk nh nk nc nh ncnc nc

nk nh nc nc

u C C u C C
I I I I

I I

ϑ ϑ ϑ ϑ

ϑ ϑ

− −

′ ′

′ −
= + − +

= − − >

                                 (15) 

However, due to * arg max ( , )
n

n n n n
C

C u C C−= , it must hold that *( , ) ( , )n n n n n nu C C u C C− −′ <  

and thus assumption i) does not hold. 
ii) If { }*

nm C′∃ ∈ − , * *
nk nc C∈ , we have *

nk
mnc

I I ′> .  Similarly, for nC′  obtained by 

replacing *
nkc  with m′  in *

nC , we would have *( , ) ( , ) 0n n n n nu C C u C C− −′ − > . This is 

contradictory with * arg max ( , )
n

n n n n
C

C u C C−= , so assumption ii) does not hold. 

Therefore, through minimizing the received average aggregate interference, each SBS n  
would get nZ  channels with the minimum average interference. Moreover, the channel with 
the lowest interference would be selected with a highest priority for transmission. Theorem 1 
is proved. 

4.2 Analysis of NE 
In this subsection, we examine whether Nash equilibrium (NE) of the dynamic interference 

graph game exist. For game IG , an action profile * * *
1 2( , , , )NE NC C C C= …  is a pure strategy 

NE if and only if no player can improve its utility by deviating unilaterally, i.e. 
* * * *( , ) ( , ), , , .n n n n n n n n n nu C C u C C n C C C− −≥ ∀ ∈ ∀ ∈ ≠                      (16) 

 
Theorem 2: IG  is an exact potential game which has at least one pure strategy NE. The 
optimal solution of the network  average interference minimization problem is a pure strategy 
NE of IG . 

Proof: We construct the potential function as 

1

1

1( , ) ( , )
2

1 ( , )
2

1 ( , ).
2

n n n n

N

n n n
n

N

n n n
n

C C U C C

u C C

s C C

− −

−
=

−
=

Φ = −

= −

=

∑

∑

                                              (17) 

We see that the potential function is equal to half of the average network interference. 
Suppose that an arbitrary player n  unilaterally changes its channel selection from 

1 2{ , , , }
nn n n nZC c c c= …  to 1 2{ , , , }

nn n n nZC c c c′ ′ ′ ′= … . 
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Because { }) 0
n

m
n m Cϑ ∈ − =∣  , based on (9)-(13), ( , )n n nu C C−  can be rewritten as 

{ }
           

( , )

       = ,

nk

nk
nk n

c m
n n n n nc n nm

c C m

m m
n i in

m i n

u C C I I

pg

ϑ ϑ

ϑ ϑ

−
∈ ∈

∈ ∈ −

= − = −

= −

∑ ∑

∑ ∑


 

                                 (18) 

Then the change in individual utility function caused by this unilateral change is given by 

{ } { }

{ }

( , ) ( , )

( ) ,

n n n n n n
m m m m

n i in n i in
m i n m i n

m m m
n n i in

m i n

u C C u C C
pg pg

pg

ϑ ϑ ϑ ϑ
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where m
nϑ′  is the special probability of SBS n  transmitting in channel m  out of a sequential 

channel candidate set nC′ . 
Based on (17) the change in the potential function caused by this unilateral change is given 

by 
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where ( , )i i iu C C−′  denotes the utility of player i  after the unilateral change of selection by 
player n . 

Using (13) and (18), we obtain the following equation: 
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Then from (19)-(21), it can be concluded that 
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Thus, it is shown that IG  is an exact potential game in accordance with the definition of 
exact potential games given in [29]. The most two important properties of potential games are 
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the following: i) A potential game has at least one pure strategy NE. ii) Local or global 
maxima of the potential function constitutes a pure strategy NE. 

Based on the above properties, Theorem 2 is proved. 

5. Algorithm and Simulation 
Up to this point, we have explored the equilibrium behavior within the theoretic formulation 

of the dynamic interference graph game for the distributed sequential channel set selection 
problem. The question that remains is how the autonomous small-cells can reach equilibrium 
in a distributed fashion. 

It is well known that some learning algorithms, for example the best response, fictitious play, 
spatial adaptive and log-linear learning algorithms, can converge towards pure strategy NE 
points for an exact potential game. 

However, these algorithms are designed for static game models, in which the utilities are 
static and can be calculated with information exchange among players, and therefore cannot be 
applied in the dynamic interference graph game. 

5.1 Algorithm description 
A distributed dynamic learning algorithm, motivated by the imitative Boltzman-Gibbs 

algorithm with multiplicative weights [30, 31], is proposed to achieve the Nash equilibria of 
the dynamic interference graph game. 

In the proposed algorithm, without information exchange, the utility of each player is 
considered to be the temporal aggregate interference varying with the dynamic load of each 
small-cell in each iteration. Moreover, in the proposed algorithm, the SBSs do not need to 
know the probability distribution of their dynamic load. Algorithm 1 elaborates on this 
approach. 

 
Algorithm 1: Distributed dynamic learning algorithm 
Step 1. Initially, at time 0t = , each small-cell n  sets the initial mixed strategy as 

( )!
!nl

t n
nC

M Zp
M
−

=  and the initial estimation 0
nlnCQ = , where nl nC ∈ , 

!1 | |
( )! n

n

Ml
M Z

≤ ≤ =
−

 . 

 Step 2.  At time 1t ≥ , each small-cell n   stochastically selects an action t
nC  according to its 

current sequential channel set selection probability vector t
np . 

 Step 3.  All small-cells sense the interference of channels in t
nC  and transmit signal based on the    

current load. Then, using (5) and (13), they calculate the temporal aggregate interference, 
which serve as the temporal utilities, i.e. 

( ) ( ).t t
nk nkt t

nk n

t
n nc nc

c C

u t I tδ
∈

= − ∑                                           (23) 

In order to facilitate the implementation of the algorithm, we add a constant to the utility of 
each small-cell to make the utility greater than zero, i.e. 

,t t
n n max nr Z I u= +                                                       (24) 

where maxI  has a fixed value andis greater than or equal to the upper bound of interference 
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detected in each channel. 
Step 4.  All the players update their estimation according to the following rules: 

1

1            
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where tl  is the the step factor. Finally, all the players update their mixed strategies 
according to the following rule: 
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                                     (26) 

where b  is the learning parameter. 
Step 5.  Return to Step 2 and repeat unless the stopping criterion has been met. 

 
Because the value of n maxZ I  is fixed, max ( , )

n n
n n nC

r C C−∈
 is equivalent to max ( , )

n n
n n nC

u C C−∈
. 

Moreover, even if we were to replace the utility nu  by nr , the properties of the game would 
not change. 

 
Theorem 3: With sufficiently small values for l  and b , the distributed dynamic learning 
algorithm converges to the Nash equilibria of the potential game IG . 

Proof: The detailed proof lines can be found in [28, 29]. 
Based on Theorems 2 and 3, we see that the distributed dynamic learning algorithm 

converges to the Nash equilibria of the proposed dynamic interference graph game IG . 
Moreover, as discussed before, the potential function of the proposed game is equal to half of 
the average aggregate network interference. Thus, the proposed algorithm would achieve the 
desirable performance when convergence to Nash equilibria has been achieved. 

5.2 Simulation results and discussion 
In this section, we present simulations conducted for the evaluation of evaluate the 

performance of the proposed learning algorithm in a dynamic and distributed environment. 
The simulation settings were set as follows. The transmission power of each SBS in each 
channel was 40mW, the background noise was -174dBm/Hz. The channel bandwidth was 

0 500kHzB = . The coverage radius of a small-cell was 10m. Like many previous studies [15], 
in order to simplify our analysis of the small-cell network, when modelling the propagation 
environment we only considered path loss. The path loss between two SBSs, was assumed 
equal to 38.46 20 ( )ijPL log d= + , where ijd  is the distance between SBSs i  and j . 

1) Convergence behavior: We analyzed the convergence behavior of distributed channel 
allocation with the proposed dynamic learning algorithm. We considered a small-cell network 
with 20 small-cells in a square region of 100m 100m× . All the small-cells were randomly 
located. The number of dedicated channels is 3M =  and there were 1-3 SUs for each 
small-cell, i.e. the number of the associated SUs ( nK ) of each small-cell n  was randomly 
selected from 1-3. The active probability of each SU was randomly selected from [0,1]  and 
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then the probability distribution of the dynamic load of each SU was determined. We set 
0.2b = , and 0.1l = . 

The evolution of action probabilities of an arbitrary chosen small-cell are shown in Fig. 4. 
In this simulation, the number of SUs in the chosen small-cell is 2. Each selected sequential 
channel sets of this cell contains 2 of the 3 dedicated channels. Thus, the number of the 
available actions is 6. It noted from the figure that the cell converges to a pure strategy in about 
80 iterations, and in this case stable sequential channel set is {2 ,3}. 
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Fig. 4.  Evolution of action probabilities of an arbitrary chosen small-cell. 

 
It is clear that each small-cell must select at least one channel to serve the SUs, which will 

be the channel with the highest transmission priority in the sequential channel set. The 
evolution of the number of users for which a particular channel is selected as the highest 
transmission priority channel is shown in Fig. 5. It is noted that the network converges in 
about 200 iterations. 

 

0 50 100 150 200 250 300
1

2

3

4

5

6

7

8

Iteration numbers

N
um

be
r o

f s
m

al
l c

el
ls

 c
ho

os
in

g 
th

e 
ch

an
ne

l
 w

ith
 th

e 
hi

gh
es

t p
rio

rit
y

 

 
Channel 1
Channel 2
Channel 3

 
Fig. 5.  Number of small-cells choosing the channel with the highest priority. 
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2) Performance evaluation: First, we evaluate the interference performance assuming an 

identical “Active” probability α  for all SUs. We varied α from 0.2 to 0.6 and set 4M = , 
3nK = . Specifically, we assumed that all small-cells were aware of all the necessary 

information of active probabilities and channel sets selection. The utilities of the small-cells 
were calculated using (18). Thus, the NE of the proposed game can be accurately achieved. 
The results were obtained by simulating 1000 independent trials. The interference 
performance for a the random channel allocation process, the best and worst NE of the 
proposed game are shown in Fig. 6. As shown in the figure, the NE solutions give rise to much 
less network interference than random allocation does. 
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Fig. 6.  Average network interference levels with varying identical α from 0.2 to 0.6 and 4M = , 

3nK = . 
 
 

Second, in order to further evaluate the interference performance and the fairness 
performance, we consider a special scenario where 4M = , 3nK = , and 1 0.6nα = , 

2 0.4nα = , 3 0.2nα = , n∈ . In the following section, we vary the the number of 
small-cells from 15 to 25, and present the performance evaluation results. In this scenario, the 
probability distributions of the cells’ dynamic loads are the same. If the probability 
distributions are different, the demanded channels by each small-cell are different, and 
fairness is hard to calculate under these conditions. The utilities of small-cells were calculated 
using (18). The interference performance for random allocation, the best and worst NE of the 
proposed game are shown in Fig. 7. 
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Fig. 7.  Average network interference levels with 4M = , 3nK = , and 1 0.6nα = , 2 0.4nα = , 

3 0.2nα = , n∈ . 
 

 As shown in the figure, random allocation achieves the worst performance and the NE 
solutions fare much better. In addition, we can see that the performance gap between the best 
NE and the worst NE is very small, i.e. the performance of the NE solution is very stable.  

We then proceed to calculate Jain's fairness index (JFI) [32] of the small-cell networks with 
each SBS's received aggregate interference ( ns  in (10)). The result is shown in Fig. 8. It is 
noted from the figure that the JFI value achieved by the NE is significantly higher than that of 
random allocation. 
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Fig. 8.  JFI of small-cell networks with 4M = , 3nK = , and 1 0.6nα = , 2 0.4nα = , 3 0.2nα = , 

n∈ . 
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Third, we evaluated interference and throughput performance in a more common scenario. 

We set 4M = , nK  was randomly selected from {1,2,3} and the active probabilities of SUs 
were randomly selected from [0,1]  in each independent trial. Each SBS did not know the 
probability distributions of its own and other SBSs' dynamic loads. The utilities of small-cells 
were calculated using (23). We simulated 1000 independent trials and then calculated the 
average results. The average network interference levels when varying the number of 
small-cells are shown in Fig. 9. It can be noted from the figure that the proposed distributed 
channel allocation significantly outperforms the random allocation. As the number of 
small-cells in a given region increases, the average interference level increases. 
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Fig. 9.  The average aggregate interference levels with 4M = , randomly selected nK  and active 

probabilities (1 3nK≤ ≤ , 0 1α≤ ≤ ). 
 
 

The average achieved throughput of the network when varying the number of small-cells is 
shown in Fig. 10. In practice, due to restrictions on the capabilities (coding and modulation) of 
devices, the signal to interference plus noise ratio (SINR) must be greater than a 
predetermined threshold. We set the SINR threshold as 5dB and the transmission rate of each 
available channel at 1Mbps. For a given channel, a cell was allowed to transmit data with a rate 
of 1 Mbps only when the temporal SINR is greater than 5dB. It can be seen from the figure that 
the average throughput, which is achieved using the distributed channel allocation method, is 
much higher than the random allocation strategy. As the number of small-cells increases, the 
average achieved throughput decreases. 
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Fig. 10.  The average achieved throughput of networks with 4M = , randomly selected nK  and 

active probabilities (1 3nK≤ ≤ , 0 1α≤ ≤ ). 
 

Lastly, we consider three small-cell networks with i) 3M = , 1 3nK≤ ≤ , ii) 4M = , 
1 3nK≤ ≤ , and iii) 3M = , 1 4nK≤ ≤ , respectively. The comparison results obtained by 
distributed channel allocation with different dedicated channels and different SU numbers are 
shown in Fig. 11. It is noted from the figure that as the number of dedicated channels increases, 
the average interference decreases accordingly. It also noted from the figure that the number of 
SUs in each small-cell increases, the average interference increases. The average achieved 
throughput of these networks is shown in Fig. 12. It can be seen from Fig. 11 and Fig. 12 that 
the more abundant channel resources are, the lower network interference will be present and 
the higher the achieved throughput will be. 
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Fig. 11.  Average network interference levels of small-cell networks with different numbers of 

dedicated channels and SUs per cell. 
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Fig. 12. The average achieved throughput of networks with different numbers of dedicated channels 

and SUs per cell. 

6. Conclusion 
In this paper, we focused on the mitigation of co-tier interference and studied the issue of 
distributed channel allocation in small-cell networks with dynamic loads. We proposed an 
allocation method for small-cells with dynamic loads. In particular, the distributed channel 
allocation method pertains to cases when the load was larger than the number of dedicated 
channels. In the absence of a central controller and information exchange between the cells, 
we defined a dynamic interference graph and formulated the problem as a dynamic 
interference graph game. We proved that the game is a potential game and has at least one pure 
strategy NE point. A distributed dynamic learning algorithm was then designed to achieve the 
NE of the game, in which each SBS doesn't know the probability distributions of its own and 
the others' dynamic loads. Simulation results showed that the proposed approach could 
mitigate dynamic co-tier interference effectively and outperform random selection 
significantly. In our future work, we aim to consider the distributed power control and channel 
allocation problem synthetically to meet the required transmission rates of users and reduce 
the aggregate power consumption. 
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