• Title/Summary/Keyword: Channel Loss

Search Result 998, Processing Time 0.029 seconds

Analysis of the Effect of Coherence Bandwidth on Leakage Suppression Methods for OFDM Channel Estimation

  • Zhao, Junhui;Rong, Ran;Oh, Chang-Heon;Seo, Jeongwook
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.4
    • /
    • pp.221-227
    • /
    • 2014
  • In this paper, we analyze the effect of the coherence bandwidth of wireless channels on leakage suppression methods for discrete Fourier transform (DFT)-based channel estimation in orthogonal frequency division multiplexing (OFDM) systems. Virtual carriers in an OFDM symbol cause orthogonality loss in DFT-based channel estimation, which is referred to as the leakage problem. In order to solve the leakage problem, optimal and suboptimal methods have already been proposed. However, according to our analysis, the performance of these methods highly depends on the coherence bandwidth of wireless channels. If some of the estimated channel frequency responses are placed outside the coherence bandwidth, a channel estimation error occurs and the entire performance worsens in spite of a high signal-to-noise ratio.

Underwater Acoustic Communication Research using Blind Channel identification (블라인드 채널추정기법(Blind Channel Identification)을 이용한 수중통신 연구)

  • Kim, Kap-Su;Cho, A-Ra;Choi, Young-Chol;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.165-169
    • /
    • 2007
  • Due to the complexity of underwater acoustic channel, signal estimation in underwater acoustic communication field is considerably affected from time-varying multipath fading channels. On this reason, the original signals should have many long training signals to estimate the channel and the purposed signals, and the bit rate of signals having information may have small rate. In order to avoid this loss of efficiency in underwater communication, this paper employed a blind channel identification method which don't use training signals. Simulations have predicted performance of the employed method in multipath environment and an aquatic plant experiment has verified the simulation results.

  • PDF

The study on heat transfer enhancement using indirect cooling system in the channel with heat source (간접냉각방식을 이용한 열원이 부착된 채널내의 열전달 촉진에 관한 연구)

  • 김광추;박만흥;윤준규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.321-331
    • /
    • 1999
  • A numerical study is carried out for increasing heat removal using indirect cooling system. Computation is performed for nine cases as variation of flow condition in the lower channel. As the result of this study, water is more effective than air at the same pressure loss in spite of the lower inlet velocity. In channel configuration, the vertical channel is more effective than horizontal channel because of the buoyancy effect. Under the condition that heat generation is the same, counter flow effectively decreases the temperature difference among blocks. Parallel flow is more effective than counter flow when average temperature of all blocks is considered. In the case of installing obstacles in the lower channel, it is desirable to install obstacles in the bottom of lower channel. Heat transfer rate increases as the height of obstacles increases.

  • PDF

The Heat Transfer and Pressure Drop Characteristics on Microchannel PCHE with various Configurations (채널 형상에 따른 마이크로채널 PCHE의 열전달 및 압력강하 특성)

  • Kim, Yoon-Ho;Moon, Jung-Eun;Lee, Kyu-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.215-220
    • /
    • 2008
  • A microchannel PCHE is manufactured by the two technologies of micro photo-etching and diffusion bonding. In this paper, heat transfer and pressure drop characteristics by applying various configuration for the flow channel in the microchannel PCHE is experimentally investigated. The flow channel configurations are designed three types such as straight, wavy and offset strip channels. The performance experiment of each configuration is performed for Reynolds numbers in ranges of $100{\sim}700$ under various flow conditions for the hot side and the Reynolds number of cold side is fixed at 350. The inlet temperatures of the hot side and cold side are conducted as $40^{\circ}C$ and $20^{\circ}C$, respectively. The heat transfer performance of wavy channel, which was similar to that of offset strip channel, was much higher than that of straight channel. The effectiveness of wavy channel and offset strip channel was evaluated as about $0.5{\sim}0.9$. The pressure drop of wavy channel was highest among configurations and that of offset strip channel was lower than that of straight channel because the round curved surface of each strip edge was reduced the pressure loss.

  • PDF

The Study on Empirical Propagation Path Loss in the Airport Cargo Terminal Environment (공항 화물터미널 환경에서 실험적인 패스 로스에 관한 연구)

  • Kim, Kyung-Tae;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1140-1147
    • /
    • 2013
  • In this paper, The path loss model of Air Traffic Control(ATC) telecommunication radio channel has been studied at the Incheon International Airport(IIA) Cargo Terminal. We measured one frequency among VHF channel bands. The transmitting site was located at different locations with different heights. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponent at IIA Cargo terminal area were 3.67 and 3.39 respectively in first and second transmitting sites. The deviation of prediction error is 14.42 and 10.38. The new path loss equation at the IIA Cargo terminal area was also developed using the derived path loss parameters. The new path loss was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.

Empirical Propagation Path Loss Model for ATC Telecommunication in the Concourse Environment (콘코스 환경에서 항공 정보통신의 실험적인 전파 경로 모델에 관한 연구)

  • Kim, Kyung-Tae;Park, Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.765-772
    • /
    • 2013
  • In this paper, we studied the path loss model of Air Traffic Control(ATC) telecommunication radio channel at the Incheon International Airport(IIA) concourse area. We measured wave propagation characteristics on the two frequencies among VHF/UHF channel bands. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency, and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponents at Concourse area were 3.1/3.13 and 3.01/3.38 respectively in 128.2MHz and 269.1MHz. The deviation of prediction error is 2.77/3.17 and 4.01/3.66. The new path loss equation at the Concourse area was also developed using the derived path loss parameters. The new path loss model was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.

Voice Quality Criteria for Heterogenous Network Communication Under Mobile-VoIP Environments

  • Choi, Jae-Hun;Seol, Soon-Uk;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3E
    • /
    • pp.99-108
    • /
    • 2009
  • In this paper, we suggest criteria for objective measurement of speech quality in mobile VoIP (Voice over Internet Protocol) services over wireless mobile internet such as mobile WiMAX networks. This is the case that voice communication service is available under other networks. When mobile VoIP service users in the mobile internet network based on packet call up PSTN and mobile network users, but there have not been relevant quality indexes and quality standards for evaluating speech quality of mobile VoIP. In addition, there are many factors influencing on the speech quality in packet network. Especially, if the degraded speech with packet loss transfers to the other network users through the handover, voice communication quality is significantly deteriorated by the transformation of speech codecs. In this paper, we eventually adopt the Gilbert-Elliot channel model to characterize packet network and assess the voice quality through the objective speech quality method of ITU-T P. 862. 1 MOS-LQO for the various call scenario from mobile VoIP service user to PSTN and mobile network users under various packet loss rates in the transmission channel environments. Our simulation results show that transformation of speech codecs results in the degraded speech quality for different transmission channel environments when mobile VoIP service users call up PSTN and mobile network users.

Codebook-Based Interference Alignment for Uplink MIMO Interference Channels

  • Lee, Hyun-Ho;Park, Ki-Hong;Ko, Young-Chai;Alouini, Mohamed-Slim
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • In this paper, we propose a codebook-based interference alignment (IA) scheme in the constant multiple-input multiple-output (MIMO) interference channel especially for the uplink scenario. In our proposed scheme, we assume cooperation among base stations (BSs) through reliable backhaul links so that global channel knowledge is available for all BSs, which enables BS to compute he transmit precoder and inform its quantized index to the associated user via limited rate feedback link. We present an upper bound on the rate loss of the proposed scheme and derive the scaling law of the feedback load to maintain a constant rate loss relative to IA with perfect channel knowledge. Considering the impact of overhead due to training, cooperation, and feedback, we address the effective degrees of freedom (DOF) of the proposed scheme and derive the maximization of the effective DOF. From simulation results, we verify our analysis on the scaling law to preserve the multiplexing gain and confirm that the proposed scheme is more effective than the conventional IA scheme in terms of the effective DOF.

Calculation of a 2-D channel flow with a dimple (딤플이 존재하는 2차원 수로유동의 계산)

  • Choe, Seo-Won;Baek, Yeong-Ho;Kim, Du-Yeon;Gang, Ho-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.49-56
    • /
    • 1997
  • Heat-transfer enhancement is seeked through modifications of fin surface. Real life plate-fin heat exchangers have complex three-dimensional geometries. Fins can have arrays of dimples and are attached to rows of penetrating tubes. To isolate the effect of surface modification, we model the real flow by a two-dimensional channel flow with a dimple on one side. The flow is analysed by solving the incompressible Navier-Stokes equation by a finite volume method on a generalized boundary-fitted coordinate. Results show a trapped vortex inside the dimple for all cases computed. Local maximum of Nusselt number occurs near the downstream end of the dimple, due to such a vortex. Location of the vortex does not change with respect to the wall temperature change, but moved downstream when Reynolds number increases. This, together with the results that in all cases vortex core is somewhat downstream of the dimple center, suggests that the mean flow above continuously feeds the kinetic energy to the recirculating flow. Heat transfer enhancement and pressure losses are studied through analysing the relevant dimensionless parameters like, Nusselt number and friction factor. In all cases computed, dimpled channel flow experiences less pressure loss than two-dimensional Poiseuille flow.