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I. INTRODUCTION 
 

Orthogonal frequency division multiplexing (OFDM) is a 

predominant transmission technology for ubiquitous wire-

less broadband networks because it can mitigate severe 

effects of frequency selective fading and provide good 

spectrum efficiency [1-4]. There have been many attempts 

to apply the multiple-input multiple-output (MIMO) tech-

nology to OFDM transmission systems, such as [5, 6]. 

For coherent detection of the received data symbols in 

OFDM transmission, channel frequency responses (CFRs) 

must be estimated and equalized. One of the OFDM channel 

estimation methods is pilot-aided channel estimation (PACE) 

where pilot symbols are assigned to pilot subcarriers, which 

are multiplexed with data subcarriers, and channel estimation 

for data symbols is performed by interpolation techniques. 

There are three basic factors affecting the performance of 

the PACE method. These are pilot patterns, estimation 

methods, and signal detection. The choice of these factors 

depends on OFDM system specifications and wireless 

channel conditions. 

In PACE, CFRs at pilot subcarriers are estimated using 

least squares (LS) or minimum mean square error (MMSE) 

estimators, and then, interpolation techniques are performed 

in order to estimate CFRs at data subcarriers by using the 

estimated CFRs at pilot subcarriers, as shown in Fig. 1. As 

an interpolation technique of PACE methods, discrete 

Fourier transform (DFT)-based interpolation is often used. 
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Abstract 

In this paper, we analyze the effect of the coherence bandwidth of wireless channels on leakage suppression methods for 

discrete Fourier transform (DFT)-based channel estimation in orthogonal frequency division multiplexing (OFDM) systems. 

Virtual carriers in an OFDM symbol cause orthogonality loss in DFT-based channel estimation, which is referred to as the 

leakage problem. In order to solve the leakage problem, optimal and suboptimal methods have already been proposed. 

However, according to our analysis, the performance of these methods highly depends on the coherence bandwidth of wireless 

channels. If some of the estimated channel frequency responses are placed outside the coherence bandwidth, a channel 

estimation error occurs and the entire performance worsens in spite of a high signal-to-noise ratio. 
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However, it may have the leakage problem caused by virtual 

carriers in an OFDM symbol. In order to deal with the 

leakage problem, some suppression methods were proposed 

in [7-11]. In particular, optimal and suboptimal linear 

estimators were proposed to estimate the equally spaced 

virtual carriers in [11], but whose performances are very 

sensitive to the coherence bandwidth of wireless channels. 

Therefore, in this study, optimal and suboptimal linear 

estimators are reviewed and theoretically analyzed in terms 

of coherence bandwidth. 

The rest of this paper is organized as follows: in Section 

II, DFT-based channel estimation and its leakage problem 

are described. Section III reviews optimal and suboptimal 

linear estimators and analyzes the effect of coherence 

bandwidth on them. In Section IV, numerical results are 

presented to show the performance degradation due to the 

effect of coherence bandwidth. Conclusions are presented in 

Section V. 

 

 

II. OFDM CHANNEL ESTIMATION 
 

A. DFT-Based Channel Estimation 
 

DFT-based interpolation is an efficient interpolation tech-

nique because of its good performance and low complexity 

[8, 9]. The PACE method using DFT-based interpolation is 

called DFT-based channel estimation, as shown in Fig. 2, 

where an inverse DFT (IDFT) operation is executed first to 

obtain the estimated channel impulse responses (CIRs) by 

using the LS-estimated CFRs at pilot subcarriers, and then, 

the estimated CIRs are transformed back into the frequency 

domain by the DFT operation to obtain the final CFRs at 

data subcarriers. 

 

 
Fig. 1. Pilot-aided channel estimation for orthogonal frequency division 

multiplexing (OFDM) systems. 

 

 

Fig. 2. Discrete Fourier transform (DFT)-based channel estimation. LS 

CE: least-squares channel estimation. 

B. Virtual Carriers and Leakage Problem 
 

In most commercialized OFDM systems, virtual carriers 

are exploited to ease the implementation of spectral masking 

filters and ensure guard bands to avoid interferences bet-

ween adjacent systems [10]. 

However, these virtual carriers have a bad influence on 

the performance of DFT-based channel estimation. In other 

words, they may cause leakage effects. Virtual carriers 

correspond to rectangular windowing in the frequency 

domain, which results in the convolution of CIRs with the 

sinc function in the time domain. Hence, the channel taps of 

CIRs are leaked to one another. Further, time-domain 

windowing is performed to reduce the noise and interference, 

which causes spectral leakage or Gibbs phenomenon, as 

shown in Fig. 3. 

In order to review the performance of DFT-based channel 

estimation and the leakage problem from virtual carriers, the 

normalized mean square error (NMSE) is represented as 

follows: Let the number of total subcarriers be 𝑁 = 𝑁𝑈 +

𝑁𝑉 + 1, where 𝑁𝑈 + 1 and 𝑁𝑉 are the number of useful 

subcarriers and the number of virtual carriers, respectively. 

The number of cyclic prefix samples is defined as 𝑁𝐺. The 

received symbol at the k-th subcarrier is represented by 

 

𝑌[𝑘] = 𝐻[𝑘]𝑋[𝑘] + 𝑊[𝑘], −𝑁𝑈/2 ≤ 𝑘 ≤ 𝑁𝑈/2   (1) 

 

where 𝑋[𝑘] is a transmitted symbol, 𝑊[𝑘] is a circularly 

symmetric complex Gaussian noise with zero mean and 

variance 𝜎2, and 𝐻[𝑘] is a CFR represented by 

 

𝐻[𝑘] = ∑ ℎ[𝑙]𝑒−𝑗2𝜋𝑘𝑙/𝑁𝐿−1
𝑙=0  ,          (2) 

 

where ℎ[𝑙] is the l-th channel gain of an 𝐿 × 1 circularly 

symmetric complex Gaussian CIR vector 𝐡 with zero mean 

and covariance matrix 𝐂ℎ = 𝐸[𝐡𝐡𝐻]. The pilot symbols are 

assigned to estimate the CFR at pilot subcarriers 

 

𝑋[𝑖𝑚] = 𝑃[𝑚], 0 ≤ 𝑚 ≤ 𝑁𝑃 − 1,         (3) 

 

where 𝑖𝑚 = −𝑁𝑈/2 + 𝑚𝐷𝑓 denotes a subcarrier location, 

𝐷𝑓 denotes the minimum pilot spacing, 𝑃[𝑚] denotes a 

 

 

 

Fig. 3. Description of the reason for leakage effects. 
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pilot symbol with a binary phase shift keying constellation, 

and 𝑁𝑃 denotes the number of pilot subcarriers. 

The received pilot vector with entries 𝑌[𝑖𝑚] is given by 

 

𝐘 = 𝐗𝐇𝑃 + 𝐖 = 𝐗𝐅𝐡 + 𝐖,           (4) 

 

where X is a diagonal matrix with 𝑃[𝑚] on its diagonal, 

and 𝐇𝑃 is a CFR vector, 𝐖 is a noise vector with zero 

mean and covariance matrix 𝜎2𝐈𝑃  ( 𝐈𝑃  is an 𝑁𝑃 × 𝑁𝑃 

identity matrix), and 𝐅 is a DFT matrix with entries 

 

[𝐅]𝑚,𝑛 = 𝑒−𝑗2𝜋𝑖𝑚𝑛/𝑁,              (5) 

 

where 0 ≤ 𝑚 ≤ 𝑁𝑃 − 1 and 0 ≤ 𝑛 ≤ 𝐿 − 1. After the LS 

channel estimation at pilot subcarriers, the observation vector 

is represented by 

 

𝐙 = 𝐗𝐻𝐘 = 𝐗𝐻𝐗𝐅𝐡 + 𝐗𝐻𝐖 = 𝐅𝐡 + 𝐖̌,      (6) 

 

where the noise vector 𝐖̌ is statistically equivalent to 𝐖 

since 𝐸[𝐖̌] = 𝟎𝑃×1  and 𝐸[𝐖̌𝐖̌𝐻] = 𝜎2𝐈𝑃 . Here, 𝟎𝑃×1 

denotes an 𝑁𝑃 × 1 zero vector. The observation vector 𝐙 

can be rewritten as 𝐙̃ to address the leakage effects 

 

𝐙̃ = [

𝟎𝑏×1

𝐙
𝟎𝑓×1

] = [

𝐇𝑏×1

𝐅𝐡
𝐇𝑓×1

] + [

𝟎𝑏×1

𝐖̆
𝟎𝑓×1

] − [

𝐇𝑏×1

𝟎𝑃×1

𝐇𝑓×1

] 

= 𝐅̃𝐡 + 𝐖̃ − 𝐇𝑣,                       (7) 

 

where 𝐙̃ is an 𝑀 × 1 observation vector, and 𝑀 = 𝑁𝑏 +

𝑁𝑃 + 𝑁𝑓 is the number of pilot subcarriers including left-

side virtual carriers (𝑁𝑏) and right-side virtual carriers (𝑁𝑓) 

with minimum pilot spacing. Here, 𝟎𝑏×1 and 𝟎𝑓×1 denote 

an 𝑁𝑏 × 1  zero vector and an 𝑁𝑓 × 1  zero vector, 

respectively. 𝐇𝑏×1  and 𝐇𝑓×1  denote an 𝑁𝑏 × 1  ideal 

CFR vector and an 𝑁𝑓 × 1 ideal CFR vector, respectively. 

In addition, 𝐅̃ is a DFT matrix with entries 

 

[𝐅̃]𝑚,𝑛 = 𝑒−𝑗2𝜋𝑖𝑚
′ 𝑛/𝑁,             (8) 

 

where 𝑖𝑚
′ = −𝑁𝑈/2 + (𝑚 − 𝑁𝑏)𝐷𝑓 , 0 ≤ 𝑚 ≤ 𝑀 − 1, and 

0 ≤ 𝑛 ≤ 𝐿 − 1. The IDFT operation transforms 𝐙̃ into the 

estimated CIR vector 𝐡̃ in (9) 

 

𝐡̃ = (1/M) × 𝐅̃𝐻𝐙̃.              (9) 

 

Then, the DFT operation transforms 𝐡̃ into the estimated 

CFR vector 𝐇̃ in (10) 

 

𝐇̃ = 𝐆𝐡̃ =
1

𝑀
𝐆𝐅̃𝐻𝐙̃ = 𝐇 +

1

𝑀
𝐆𝐅̃𝐻𝐖̃ −

1

𝑀
𝐆𝐅̃𝐻𝐇𝑣,  (10) 

 

where 𝐅̃𝐻𝐅̃ = 𝑀𝐈𝐿, and 𝐇 = 𝐆𝐡. Here, 𝐆 is a DFT matrix 

with entries 

[𝐆]𝑚,𝑛 = 𝑒−𝑗2𝜋𝑚𝑛/𝑁,             (11) 

 

where −𝑁𝑈/2 ≤ 𝑚 ≤ 𝑁𝑈/2  and 0 ≤ 𝑛 ≤ 𝐿 − 1 . Note 

that the third term in (10) denotes the leakage. Now, the 

error covariance matrix of 𝐇 can be given by 

 

𝐂 = 𝐄 [(𝐇 − 𝐇̃)(𝐇 − 𝐇̃)
𝐻

] =
𝜎2

𝑀2
𝐆𝐔𝐆𝐻 +

1

𝑀2
𝐏𝐕𝐏𝐻,  (12) 

 

where 𝐔 = 𝐅𝐻𝐅, 𝐏 = 𝐆𝐅̃𝐻, and 𝐕 = 𝐸[𝐇𝑣𝐇𝑣
𝐻]. To reveal 

the channel covariance matrix 𝐂ℎ, 𝐕 is rewritten as 

 

𝐕 = 𝐄 [(𝐅̃𝑣𝐡)(𝐅̃𝑣𝐡)
𝐻

] = 𝐅̃𝑣𝐂ℎ𝐅̃𝑣
𝐻,        (13) 

 

where 𝐅̃𝑣 denotes a DFT matrix with entries related to 𝐇𝑣. 

The NMSE performance can be presented as 

 

𝜀 =
1

𝑁𝑈+1
𝑡𝑟(𝐂)  

=
1

𝑁𝑈+1

𝜎2

𝑀2
𝑡𝑟(𝐆𝐔𝐆𝐻) +

1

𝑁𝑈+1

1

𝑀2
𝑡𝑟(𝐏𝐕𝐏𝐻).  (14) 

 

where the first term denotes the noise effects and the second 

term denotes the leakage effects. 
 

 

III. EFFECT OF COHERENCE BANDWIDTH ON 
LEAKAGE SUPPRESSION METHODS 

 

A. Review of Leakage Suppression Methods 
 

In order to minimize the NMSE in (14), optimal and sub-

optimal linear estimators were proposed in [11]. They can 

be expressed as 

 

𝐊𝑜𝑝𝑡 = 𝐅̃𝑣𝐂ℎ𝐅𝐻(𝐅𝐂ℎ𝐅𝐻 + 𝜎2𝐈𝑃)−1,        (15) 

 

𝐊𝑠𝑢𝑏 =
1

𝐿
𝐅̃𝑣𝐅𝐻 (

1

𝐿
𝐅𝐅𝐻 + 𝜎2𝐈𝑃)

−1

.         (16) 

 

Then, optimal or suboptimal linear estimators are used to 

estimate 𝐇̂𝑣 = 𝐊𝑜𝑝𝑡Z or 𝐇̂𝑣 = 𝐊𝑠𝑢𝑏Z, respectively. Their 

error covariance matrices can be given by 

 

𝐂𝑜𝑝𝑡 =
𝜎2

𝑀2
𝐆𝐔𝐆𝐻 +

1

𝑀2
𝐏𝐕𝑜𝑝𝑡𝐏𝐻,         (17) 

 

𝐂𝑠𝑢𝑏 =
𝜎2

𝑀2
𝐆𝐔𝐆𝐻 +

1

𝑀2
𝐏𝐕𝑠𝑢𝑏𝐏𝐻,         (18) 

 

where 𝐕𝑜𝑝𝑡 and 𝐕𝑠𝑢𝑏 are represented as 

 

𝐕𝑜𝑝𝑡 = 𝐸 [(𝐇𝑣 − 𝐊𝑜𝑝𝑡𝐙)(𝐇𝑣 − 𝐊𝑜𝑝𝑡𝐙)
𝐻

],    (19) 

 

𝐕𝑠𝑢𝑏 = 𝐸[(𝐇𝑣 − 𝐊𝑠𝑢𝑏𝐙)(𝐇𝑣 − 𝐊𝑠𝑢𝑏𝐙)𝐻].    (20) 
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Finally, their NMSEs are given by 

 

𝜀𝑜𝑝𝑡 =
1

𝑁𝑈+1

𝜎2

𝑀2
𝑡𝑟(𝐆𝐔𝐆𝐻) +

1

𝑁𝑈+1

1

𝑀2
𝑡𝑟(𝐏𝐕𝑜𝑝𝑡𝐏𝐻), (21) 

 

𝜀𝑠𝑢𝑏 =
1

𝑁𝑈+1

𝜎2

𝑀2
𝑡𝑟(𝐆𝐔𝐆𝐻) +

1

𝑁𝑈+1

1

𝑀2
𝑡𝑟(𝐏𝐕𝑠𝑢𝑏𝐏𝐻). (22) 

 

From (21) and (22), we find that the NMSE performance 

improvement depends on the second terms 𝐕𝑜𝑝𝑡 and 𝐕𝑠𝑢𝑏, 

respectively. 

 

B. Effect of Coherence Bandwidth 

 

Although optimal and suboptimal linear estimators pro-

vide good performance with moderate complexity, their 

performance may decrease according to wireless channel 

conditions such as coherence bandwidth. 

Coherence bandwidth is a statistical measurement of the 

range of frequencies over which the channel can be con-

sidered flat [12]. The coherence bandwidth can be approxi-

mately defined as 

 

𝐵𝑐 ≈
1

𝜏𝑚𝑎𝑥
=

1

𝐿𝑇𝑠
.               (23) 

 

where 𝜏𝑚𝑎𝑥  is the maximum delay spread of a wireless 

channel and 𝑇𝑠 is the sampling time of an OFDM system. 

If the coherence bandwidth is divided by the subcarrier 

spacing ∆𝑓 = 1/𝑁𝑇𝑠 , the number of subcarriers in the 

range of the coherence bandwidth can be obtained. For 

instance,  

 
𝐵𝑐

∆𝑓
=

𝑁

𝐿
=

512

20
≈ 25,               (24) 

 

where we assume 𝑁 = 512 and 𝐿 = 20. If the minimum 

pilot spacing is 𝐷𝑓 = 8, three 𝐷𝑓-spaced virtual carriers will 

be in the range of the coherence bandwidth, as shown in Fig. 

4. 

Therefore, if optimal and suboptimal linear estimators try 

to estimate CFRs outside the range of the coherence band-

width, they may experience a decrease in their performance. 

 

 

IV. NUMERICAL RESULTS 
 

Computer simulations have been run to analyze leakage 

suppression methods such as optimal and suboptimal linear 

estimators in terms of the coherence bandwidth of wireless 

channels. We consider the OFDM system using QPSK 

modulation in the 1.25-MHz bandwidth at 2.3 GHz with 

𝑁𝐺 = 32 , 𝑁 = 512 , 𝑁𝑈 + 1 = 481 , 𝑁𝑉 = 31 , 𝐷𝑓 = 8 , 

𝑁𝑃 = 61, and 𝑀 = 64. The multipath fading channel is 

assumed to have an exponential power delay profile with 

𝐿 = 20. 

 
Fig. 4. Coherence bandwidth and minimum pilot spacing. 

 

 
Fig. 5. Normalized mean square error (NMSE) performance in case of 

no virtual carriers. SNR: signal-to-noise ratio. 

 

 
Fig. 6. Normalized mean square error (NMSE) performance of the 

conventional method (signal-to-noise ratio [SNR] = 20 dB). 
 
 

Fig. 5 shows the NMSE performance of DFT-based 

channel estimation in the case of no virtual carriers. It has 

constant values determined by the noise variance or the 

signal-to-noise power ratio (SNR). In contrast, Fig. 6 shows 

the NMSE performance in the case of virtual carriers 

(namely, conventional DFT-based channel estimators), which 

is theoretically plotted according to the total subcarriers index 

by using (14). The first term in (14) strongly depends on the 
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Fig. 8. Normalized mean square error (NMSE) performance of the sub-

optimal method (𝜎2 = 40). 
 

 

noise variance, whereas the second term leads to the leakage. 

In addition, the second term is the dominant factor in 

performance degradation, particularly at edge subcarriers. 

Fig. 7 shows the performance improvement resulting 

from the suboptimal linear estimator by using 𝜎2 = 40 in 

(16). The first term is the same as that in Fig. 6, but the 

second term is highly improved when compared with that in 

Fig. 6. 

Fig. 8 illustrates the NMSE performance of the sub-

optimal linear estimator with 𝜎2 = 40 in (16) as the 

number of pilot subcarriers (𝑁𝑃) decreases, which means 

that the number of 𝐷𝑓 -spaced virtual carriers to be 

estimated increases. Further, Fig. 9 illustrates the NMSE  

 
Fig. 9. Normalized mean square error (NMSE) performance of the sub-

optimal method (𝜎2 = 10). 

 

 

performance of the suboptimal linear estimator with 

𝜎2 = 10. By comparing Fig. 8 with Fig. 9 when 𝑁𝑃 =

61, 59, 57, we find that the suboptimal linear estimator with 

𝜎2 = 40 is superior to that with 𝜎2 = 10. Due to the high 

SNR assumption in [13], these results are reasonable. 

However, when 𝑁𝑃 = 55, 53, the NMSE performances in 

Fig. 8 are more severely degraded. 

These results denote the cases in which the 𝐷𝑓-spaced 

virtual carriers to be estimated are out of the range of the 

coherence bandwidth. In other words, the 𝐷𝑓-spaced virtual 

carriers outside the coherence bandwidth are sensitive to the 

SNR mismatch. In addition, the SNR mismatch of the 

suboptimal linear estimator with 𝜎2 = 40 is more critical 

than that of the suboptimal linear estimator with 𝜎2 = 10, 

when the actual SNR is 20 dB. Hence, the channel estimation 

errors outside the coherence bandwidth resulting from the 

SNR mismatch cause the entire performance degradation. 

 

 

V. CONCLUSIONS 
 

In this study, the effect of the coherence bandwidth of 

wireless channels on leakage suppression methods such as 

the optimal and suboptimal linear estimators for OFDM 

channel estimation was analyzed. The NMSE performances 

of these methods were very sensitive to the coherence 

bandwidth of wireless channels. If some of the estimated 

CFRs were placed out of the range of the coherence band-

width, a severe channel estimation error occurred at edge 

subcarriers and the entire NMSE performance decreased. 

Further, the SNR mismatch of the suboptimal linear 

estimators was more critical in these cases. 
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Fig. 7. Normalized mean square error (NMSE) performance of the sub-

optimal method (signal-to-noise ratio [SNR] = 20 dB). 
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