• Title/Summary/Keyword: Channel Feedback

Search Result 522, Processing Time 0.298 seconds

Distributed Compressive Sensing Based Channel Feedback Scheme for Massive Antenna Arrays with Spatial Correlation

  • Gao, Huanqin;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.108-122
    • /
    • 2014
  • Massive antenna array is an attractive candidate technique for future broadband wireless communications to acquire high spectrum and energy efficiency. However, such benefits can be realized only when proper channel information is available at the transmitter. Since the amount of the channel information required by the transmitter is large for massive antennas, the feedback is burdensome in practice, especially for frequency division duplex (FDD) systems, and needs normally to be reduced. In this paper a novel channel feedback reduction scheme based on the theory of distributed compressive sensing (DCS) is proposed to apply to massive antenna arrays with spatial correlation, which brings substantially reduced feedback load. Simulation results prove that the novel scheme is better than the channel feedback technique based on traditional compressive sensing (CS) in the aspects of mean square error (MSE), cumulative distributed function (CDF) performance and feedback resources saving.

Low-Overhead Feedback Topology Design for the K-User MIMO Interference Alignment

  • Jin, Jin;Gao, Xiang-Chuan;Li, Xingwang;Cavalcante, Charles Casimiro;Li, Lihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5304-5322
    • /
    • 2018
  • Since designing a feedback topology is a practical way to implement interference alignment at reduced cost of channel state information (CSI) feedback, six feedback topologies have been presented in prior works for a K-user multiple-input multiple-output interference channel. To fully reveal the potential benefits of the feedback topology in terms of the saving of CSI overhead, we propose a new feedback topology in this paper. By efficiently performing dimensionality-decreasing at the transmitter side and aligning interference signals at a subset of receivers, we show that the proposed feedback topology obtains substantial reduction of feedback cost over the existing six feedback designs under the same antenna configuration.

Capacity-Equivocation Region of a Special Case of Wiretap Channel with Noiseless Feedback

  • Dai, Bin;Han Vinck, A.J.;Luo, Yuan;Ma, Zheng
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • The general wiretap channel with noiseless feedback is first investigated by Ahlswede and Cai, where lower and upper bounds on the secrecy capacity are provided in their work. The upper bound is met with equality only in some special cases. In this paper, we study a special case of the general wiretap channel with noiseless feedback (called non-degraded wiretap channel with noiseless feedback). Inner and outer bounds on the capacity-equivocation region of this special model are provided. The outer bound is achievable if the main channel is more capable than the wiretap channel. The inner bound is constructed especially for the case that the wiretap channel is more capable than the main channel. The results of this paper are further explained via binary and Gaussian examples. Compared with the capacity results for the non-degraded wiretap channel, we find that the security is enhanced by using the noiseless feedback.

Efficient Distributed Video Coding System without Feedback Channel

  • Moon, Hak-Soo;Lee, Chang-Woo;Lee, Seong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1043-1053
    • /
    • 2012
  • In distributed video coding (DVC) systems, the complexity of encoders is greatly reduced by removing the motion estimation operations in encoders, since the correlation between frames is utilized in decoders. The transmission of parity bits is requested through the feedback channel, until the related errors are corrected to decode the Wyner-Ziv frames. The requirement to use the feedback channel limits the application of DVC systems. In this paper, we propose an efficient method to remove the feedback channel in DVC systems. First, a simple side information generation method is proposed to calculate the amount of parity bits in the encoder, and it is shown that the proposed method yields good performance with low complexity. Then, by calibrating the theoretical entropy with three parameters, we can calculate the amount of parity bits in the encoder and remove the feedback channel. Moreover, an adaptive method to determine quantization parameters for key frames is proposed. Extensive computer simulations show that the proposed method yields better performance than conventional methods.

Performance Improvement of the Tx Diversity for W-CDMA (W-CDMA를 위한 전송 안테나 다이버시티 성능 개선)

  • 김성진;이용석;박형운
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.87-90
    • /
    • 2000
  • Differential channel 정보를 feedback 하는 close loop Tx diversity를 제안한다. 본 Tx diversity는 기존의 channel feedback Tx diversity 보다 W-CDMA의 forward link와 reverse link channel 용량을 더 많이 늘린다. Differential channel 정보를 estimation 하는 방법을 제안한다. 부가적으로 보내는 정보 없이 W-CDMA의 forward power control 에 사용하는 dedicated pilot 심볼을 이용해 differential channel 정보를 estimation한다. 기존에 제안된 channel feedback Tx diversity들과 성능을 비교한다.

  • PDF

An Efficient Channel Feedback Method for Zeroforcing Beamforming Based Multi-User Multiple-Input Multiple-Output System (ZFBF 기반 다중 사용자 MIMO 시스템을 위한 효과적인 채널 피드백 기법)

  • Oh, Tae-Youl;Ahn, Sung-Soo;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9A
    • /
    • pp.673-678
    • /
    • 2009
  • This paper presents a feedback method for improving the system capacity of MU-MIMO system for downlink channel environments. In a typical conventional feedback method, CVQ, in order to enhance the channel capacity, not only the feedback load is increased but also the quantization of the channel vector is increased, because the channel parameter of each user has to be fed back after quantizing one of the pre-defined N-codebook vectors. In this paper, a novel feedback method is proposed which provides an improved system capacity by transferring the channel state information without increasing the feedback load. Performance of the proposed method is compared to the conventional CVQ method through computer simulations. The simulation results show that the proposed method with 3-bit feedback provides a system capacity comparable to the CVQ method of 6-bit feedback when the number of transmit antennas is 2.

Performance analysis of decision feedback equalizer with dual-feedback in pre-ghost channel (이중 후방필터 구조 결정 궤환 등화기의 선행 고스트에 대한 성능 분석)

  • Oh, Young-Ho;Lee, Kyoung-Won;Kim, Dae-Jin
    • Journal of Broadcast Engineering
    • /
    • v.12 no.5
    • /
    • pp.516-524
    • /
    • 2007
  • In order to use limited frequency resources efficiently, a single frequency network using digital on-channel repeater(DOCR) has been studied and would be implemented. The DOCR generates strong pre-ghosts to ATSC DTV receivers. The forward filter of equalizer in ATSC DTV receivers compensates the distortion made by pre-ghosts. This process induces noise enhancement and colored noise, thereby results in the performance degradation. In this paper we propose to use a dual-feedback equalizer to combat strong pre-ghosts. The proposed equalizer has two feedback filters. One is the decision feedback filter and the other is non-decision feedback filter. The additional non-decision feedback filter decreases the noise by whitening the noise and preventing the generation of colored noise in pre-ghost channel. Thus the equalization technique of dual-feedback structure has performance enhancement in pre-ghost channel in comparison with conventional decision feedback equalizer(DFE). By simulation we analyzed the performance enhancements of DTV receiver using dual-feedback equalization structure.

A Single Feedback Based Interference Alignment for Three-User MIMO Interference Channels with Limited Feedback

  • Chae, Hyukjin;Kim, Kiyeon;Ran, Rong;Kim, Dong Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.692-710
    • /
    • 2013
  • Conventional interference alignment (IA) for a MIMO interference channel (IFC) requires global and perfect channel state information at transmitter (CSIT) to achieve the optimal degrees of freedom (DoF), which prohibits practical implementation. In order to alleviate the global CSIT requirement caused by the coupled relation among all of IA equations, we propose an IA scheme with a single feedback link of each receiver in a limited feedback environment for a three-user MIMO IFC. The main feature of the proposed scheme is that one of users takes out a fraction of its maximum number of data streams to decouple IA equations for three-user MIMO IFC, which results in a single link feedback structure at each receiver. While for the conventional IA each receiver has to feed back to all transmitters for transmitting the maximum number of data streams. With the assumption of a random codebook, we analyze the upper bound of the average throughput loss caused by quantized channel knowledge as a function of feedback bits. Analytic results show that the proposed scheme outperforms the conventional IA scheme in term of the feedback overhead and the sum rate as well.

Reduced Feedback Energy Based Hybrid Beamforming for Millimeter Wave MIMO Systems (다중 안테나 밀리미터파 시스템에서 피드백 에너지를 절감시키는 하이브리드 빔포밍 기술)

  • Noh, Jeehwan;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.3-8
    • /
    • 2014
  • We consider a limited feedback based hybrid beamforming which reduces the energy of feedback information. In the millimeter wave channel, some rays with large ray gain dominate energy of the channel. Using this point, we propose a channel feedback scheme that employs limited number of channel rays. Also, we provide a hybrid beamforming scheme for the limited feedback system. Based on the simulation results, the proposed scheme shows a comparable data rate performance with conventional schemes, while it remarkably reduces energy of channel feedback.

Joint Feedback Design for Interference Channel (간섭 채널을 위한 통합 궤환 정보 설계)

  • Jeon, Ki-Jun;Byun, Ilmu;Ko, Byung-Hoon;Rhee, Duho;Lee, Seung-Ro;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.927-936
    • /
    • 2012
  • In this paper, we study joint feedback design for interference channel (IC). We develop a simple iterative algorithm for the joint feedback design to maximize the expected rate when the transmitters use partial channel-state information (CSI) obtained by the feedback link. Also, from the simulation result, we show that the performance gain is obtained compared to the conventional scheme.