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Abstract 

 
Since designing a feedback topology is a practical way to implement interference alignment at 
reduced cost of channel state information (CSI) feedback, six feedback topologies have been 
presented in prior works for a K-user multiple-input multiple-output interference channel. To 
fully reveal the potential benefits of the feedback topology in terms of the saving of CSI 
overhead, we propose a new feedback topology in this paper. By efficiently performing 
dimensionality-decreasing at the transmitter side and aligning interference signals at a subset 
of receivers, we show that the proposed feedback topology obtains substantial reduction of 
feedback cost over the existing six feedback designs under the same antenna configuration. 
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1. Introduction 

Interference alignment (IA) is an advanced technique for multi-node coordination as it is 
optimal in terms of degrees of freedom (DoF) at high signal-to-noise ratio regime, and thus IA 
can be exploited in interference channel [1], relay based wireless networks [2-3], 
heterogeneous networks [4], etc. In fact, the DoF gains of IA are obtained by designing IA 
precoders whose computations require sufficient channel state information (CSI) at the 
transmitters (Txs). To determine IA precoders, two types of approaches can be applied to 
tackle the CSI acquisition issue: reciprocity and feedback [5]. For time division duplex (TDD) 
systems where ideal uplink-downlink reciprocity of the radio channels is assumed, after each 
base station acquires the channel knowledge for its downlink channels by estimating the 
uplink counterparts, these local CSIs are exchanged between the base stations so as to 
calculate IA precoders [6-7]. However, in practice, channel reciprocity cannot be directly 
utilized due to radio frequency circuits discrepancy, so that a TDD system needs to be tightly 
calibrated before exploiting reciprocity [8-9]. On the other hand, for frequency division duplex 
(FDD) systems where reciprocity does not hold, each receiver (Rx) feeds back the information 
about the estimated CSIs to all Txs for the implementation of IA [10-11]. This feedback 
mechanism is called the full-feedback topology in [12], which incurs an unacceptable 
feedback overhead penalty. 

For the K-user multiple-input-multiple-output (MIMO) interference channel, due to the 
impracticality of the excessively high-overhead feedback in the full-feedback topology, two 
centralized feedback topologies and a CSI-exchange topology were provided in [12] to reduce 
the CSI feedback cost to a reasonable level. Then in [13], three improved feedback structures 
were presented to lower the CSI overhead or decrease the time delay for those feedback 
designs in [12]. Consider the existing six feedback topologies. The two-hop centralized 
topologies either impose heavy computation and feedback burden on a CSI collecting Rx or 
introduce an additional CSI control station. By separating the centralized task of computation 
and feedback for all precoders at one designated node into a few distributed subtasks at several 
designated Rxs, the distributed feedback topology not only overcomes the above drawbacks of 
the centralized structures, but also attains dramatic reduction of CSI overhead. In addition, by 
simply re-arranging the information exchange order, the modified CSI-exchange design 
shortens transmission delay in the original CSI-exchange design. Besides, the four-hop 
feedback topology, which employs 4 time slots to determine all IA precoders, has the lowest 
CSI overhead among the existing six feedback structures. 

From [14, Table V], designing a feedback topology is one of the effective methods for 
solving the CSI acquisition problem. Although six feedback structures have already been 
provided based on specific closed-form IA solutions in the field of feedback topology 
construction, it does not mean that the potential advantage of feedback topologies in the saving 
of CSI overhead has been completely revealed. In other words, it is possible to design a new 
feedback structure with less CSI overhead by finding an appropriate closed-form IA solution 
different from those used in the existing six feedback topologies, because multiple IA 
solutions exist in the K-user MIMO interference channel [15-16]. For this reason, in this paper, 
we concentrate on the CSI overhead reduction from the perspective of feedback topology 
design based on closed-form IA solution. 

Note that a number of research works are devoted to the reduction of feedback overhead for 
IA [17-24], among which, two related works focusing on the MIMO interference channel have 
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been done in [17] and [18]. One difference between the feedback topology in this work and the 
schemes in [17] and [18] is that the proposed feedback topology allows CSI exchange between 
the Rxs (this Rx cooperation is also exploited in [12] and [13]), while the case of no Rx 
cooperation is investigated in [17] and [18]. Additionally, the IA precoders in [17] and [18] are 
computed by iterative approaches under arbitrary antenna configurations, whereas the 
precoders in the feedback topologies studied in [12-13] and this work, are derived by 
closed-form IA solutions under specific antenna configurations. Compared to the closed-form 
solutions, the iterative IA approaches have significantly high computational complexity. 
Therefore, the closed-form IA solutions are more suitable for practical implementation than 
the iterative algorithms. This motivates us to pursue the saving of CSI overhead in the field of 
feedback topology design. 

In this paper, we consider the MIMO interference channel under the same antenna 
configuration as that discussed in [12] and [13]. The main contributions of this paper are 
summarized as follows: 1) We develop a specific closed-form IA solution with which a new 
feedback structure is proposed. By making partial interference signals aligned at a subset of 
Rxs after efficiently exploiting dimensionality-decreasing at the Tx side, the proposed 
feedback structure requires lower CSI overhead to complete the computation and delivery of 
IA precoders compared to the existing feedback designs. 2) Since feedback topology is 
classified as one of the methods aiming at overcoming the CSI problem of IA [14], we further 
reveal the advantage of feedback topology in terms of CSI overhead reduction by providing 
the proposed low-overhead feedback topology. 

The remainder of this paper is organized as follows. The system model is introduced in 
Section 2. In Section 3, we present the proposed feedback topology. Section 4 compares the 
proposed feedback topology to the existing designs. Conclusions are given in Section 5. 

2. System Model 
The K-user MIMO interference channel is comprised of K Tx-Rx pairs with M  antennas at 
each node. Each Tx exploits a linear precoder to transmit d  data streams to its corresponding 
Rx. Here, the antenna configuration of ( 1)M K d= −  for 4K ≥  is considered in this paper as 
in [13]. Denoting iy  as the signal received at Rx i , iy  can be written as 

1,

K

i ii i i ij j j i
j j i

P P
d d = ≠

= + +∑y H V s H V s n                                         (1) 

where in  denotes the additive white Gaussian noise vector with the covariance matrix MI  

observed at Rx i , [1] [ ][ ]d T
i i i=s s s

 stands for the 1d ×  data vector with each entry having 

zero mean and unit variance transmitted from Tx i , [1] [ ][ ]d
i i i=V v v

 is the precoder of size 
M d×  at Tx i , P  denotes the transmission power, and ijH  indicates the channel matrix of 
size M M×  from Tx j  to Rx i . It is assumed that the channel elements are sampled from 
independent identically distributed (i.i.d.) complex Gaussian random variables with zero mean 
and unit variance. In addition, the receive filter of size M d× at Rx i  is denoted as 

[1] [ ][ ]d
i i i=U u u

. As in [12], we assume that each column of the precoder iV  and each 

column of the receive filter iU  are normalized to have unit norm, i.e., 
2 2[ ] [ ] 1l l

i i= =v u  for 
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{1, , }l d∀ ∈ 
. Through the proposed transceiver design, all interference signals can be 

cancelled completely, so that the achievable sum rate is given by 

( )
2

[ ] [ ]
_ 2

1 1
log 1

K d Hl l
sum rate i ii i

i l

PR
d= =

 
= + 

 
∑∑ u H v .                                    (2) 

Notably, in this paper, the FDD system is taken into account, and the CSI overhead refers to 
the total number of complex coefficients used for the exchange of CSI and precoders as in [12] 
and [13]. 

3. Low-Overhead Feedback Topology 
In this section, we first briefly describe the key idea of the proposed feedback design. Then, we 
introduce the proposed low-overhead feedback topology for the K-user MIMO interference 
channel under the antenna configuration of ( 1)M K d= − . 

3.1 The Key to Proposed Feedback Topology 
From [18], the antenna configuration of ( 1)M K d= −  considered here is a super-feasible 
antenna setting where each node has redundant antennas which can be ignored without 
affecting the DoF characterization. Therefore, if we ignore some of these redundant antennas, 
it is possible to reduce the overhead of CSI feedback because the number of complex 
coefficients of the channel matrix becomes small. Two methods can be used for ignoring 
M N−  (where d N M≤ < ) antennas at a Tx: randomly selecting N  antennas while 
powering off others, and using a randomly picked auxiliary precoder of size M N× . For the 
sake of clarity in description of the IA precoder design for the feedback topology, here we 
choose the precoding method. After Tx j  sends a randomly picked auxiliary precoder 

CM N
j

×∈v , the effective channel matrix ij jH v  seen at Rx i , i∀ , is of size M N× . This 
implies that we can equivalently think that the spatial dimensions provided by the transmit 
antennas at Tx j  using a randomly picked precoder is decreased from M  to N . We refer to 
this precoding process as dimensionality-decreasing at the Tx side. It is worth noting that a 
precoder of size M d×  can be formulated as two cascaded precoders in the proposed 
feedback design. The preceding precoder named as auxiliary precoder is used to perform 
dimensionality-decreasing, eliminate interference, or zero force interference after 
implementing dimensionality-decreasing, while the subsequent precoder named as combining 
precoder is designed to align interference. 

Now, let us roughly review the precoder designs of the existing six feedback structures. The 
four-hop topology carries out dimensionality-decreasing by randomly picking the precoders of 
( 3)K −  designated Txs, and constructs the precoders of other three Txs so as to let two 
interference signals be aligned at each of the three designated Rxs, whereas the other existing 
feedback topologies design all precoders to ensure that two cross-link interferences are 
overlapped at each of the K  Rxs. Due to the fact that the CSI overhead of the four-hop 
topology is lower than those of other existing feedback designs, the four-hop topology is able 
to benefit from its distinctive precoder design to achieve a CSI overhead reduction. 

Inspired by the four-hop feedback topology, in this work we aim to establish a new feedback 
topology to seek a further saving of CSI overhead. The key idea behind the proposed feedback 
topology is an efficient way to exploit the dimensionality-decreasing at the Tx side, and align 
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interference signals at a subset of Rxs. To be specific, for the proposed feedback topology, we 
employ the dimensionality-decreasing in a flexible fashion to allow a certain Tx to remain N  
(where d N M≤ < ) dimensions after ignoring M N−  redundant antennas. Additionally, in 
order to let a subset of Rxs observe aligned interference signals, the precoders used for 
implementing alignment in the proposed topology can be computed in different time slots. In 
contrast, for the four-hop feedback structure, the number of remaining dimensions at a certain 
Tx after applying the dimensionality-decreasing is fixed to d , and the precoders used for 
carrying out alignment are calculated during one time slot. 

Relying on the proposed idea, we will provide the detailed design of the new feedback 
topology in the following subsections. The proposed feedback topology consists of the 
derivation of the closed-form IA solution, and the exchange of information used for acquiring 
precoders at the Tx side. Our topology is carried out in three phases. In phase 1, using two time 
slots, the precoders of size M d×  for Txs 1, 2,  , ( 2)K −  are obtained at the corresponding 
TXs, and then the cross-link interferences from these ( 2)K −  Txs are eliminated at the Rx 
side. In phase 2, employing one time slot, Tx ( 1)K −  and Tx K  acquire their corresponding 
auxiliary precoders of size 2M d× . In phase 3, by spending three time slots, the combining 
precoders of size 2d d×  are attained at Tx ( 1)K −  and Tx K . To facilitate the exposition, 
we start with the 4K =  case. 

3.2 Proposed Feedback Topology for 4K =  
In this subsection, we consider the case of 4K =  to explain the key idea of the proposed 
feedback topology in detail. For this case, there are 12 cross-links in the system, so that the 
precoders and receive filters are designed to cancel all cross-link interferences as illustrated in 
Fig. 1. Note that, in Fig. 1 (also in Fig. 3 and Fig. 5), the directions of green arrows indicate 
the nodes that implement zero-forcing to nullify interference signals, and the red arrows 
indicate the aligned effective interference channels. 

(a) Phase 1

Zero-forcing IA

(c) Phase 3(b) Phase 2

1

2d 3d

2d 3d

2d 3d

3d 3d

1

2 2

3 3

44

1

2d

2d

2d d

3d 2d

1

2 2

3 3

44

1

2d

2d

2d

2d 2d

1

2 2

3 3

44

Txs Rxs Txs TxsRxs Rxs

 
Fig. 1. Illustration of how to eliminate all cross-link interferences when 4K =  

 
For the case of 4K = , each node is equipped with 3d  antennas. In order to implement the 

dimensionality-decreasing at the Tx side, we randomly generate the auxiliary precoders 
3 2

1 C d d×∈v , 3 2
2 C d d×∈v , and 3 2

3 C d d×∈v  for Tx 1, Tx 2, and Tx 3, respectively. After 
applying these auxiliary precoders, we can equivalently think that the numbers of antennas at 
Txs 1, 2, and 3 become 2d . Then Txs 1 and 2 send precoded pilot symbols using their 
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predetermined auxiliary precoders 1v  and 2v , respectively. Remarkably, the initial pilot 
sending procedure is not involved in the total required time slots for the feedback structures in 
[12] and [13]. Accordingly, when counting the number of time slots needed for the proposed 
feedback design, we do not consider the time slot used for the initial pilot transmission either. 
Therefore, the proposed topology for 4K =  demands 6 time slots in total to complete the 
calculation and delivery of IA precoders. The detailed design process is explained as follows. 

1) Phase 1: Two time slots are employed in this phase. In time slot 1, after Rx 4 estimates 
the interfering effective channels from Txs 1 and 2 (i.e., 41 1H v  and 42 2H v ), as depicted in 

Fig. 1(a), two combining precoders 2
1 C d d×∈v  and 2

2 C d d×∈v  are designed to make the 
interfering links from Txs 1 and 2 to Rx 4 span the same subspace: 

( ) ( )41 1 1 42 2 2span span=H v v H v v                                                (3) 
where ( )span ⋅  denotes the space spanned by the column vectors of a matrix. To satisfy this 
condition, we formulate the following matrix equation, 

[ ] 1
41 1 42 2

2
0. 

− = = 
 

v
H v H v FG

v




                                              (4) 

Since the size of the matrix F  is 3 4d d× , G  can be chosen as d  basis vectors of the null 
space of F , from which 1v  and 2v  can be acquired at Rx 4. Then the two computed 
combining precoders are fed back from Rx 4 to the corresponding Txs, and thus we have 

1 1 1=V v v  and 2 2 2=V v v  at Txs 1 and 2, respectively. 
In the second time slot, as illustrated in Fig. 2, Txs 1 and 2 forward precoded pilot symbols 

using the obtained precoders 3
1 C d d×∈V  and 3

2 C d d×∈V  respectively, while Tx 4 transmits 
non-precoded pilots at the same time. Hence, Rx i , {1,2,3,4}i∈ , is capable of estimating the 
interfering effective channels ij jH V  ( 1,2j =  and j i≠ ). Now, we design the auxiliary 

receive filters 3 2
1 C d d×∈u , 3 2

2 C d d×∈u , 3 2
4 C d d×∈u  for Rxs 1, 2, 4, respectively, and the 

receive filter 3
3 C d d×∈U  for Rx 3, so as to suppress the interferences caused by Tx 1 and Tx 2 

at the Rx side. 

2v
1v

4v
3v

4

3

2

1

4

3

2

1

(i)

Txs Rxs(ii) Precoded pilots 
sending

(ii) Non-precoded pilots 
sending

(vi)
(iv) Precoded pilots 

sending
(iii)

(v)

3 34
HU H

1
1 13 3 1 14 4( ) ( )H H−u H v u H v

 
Fig. 2. Illustration of the CSI signaling exchange procedure for the proposed feedback topology when 

4K =  
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For Rx 1, the auxiliary receive filter 1u  can be calculated as 

( )1 2 12
H Hnull⊂u V H                                                             (5) 

where ( )null ⋅  denotes an orthonormal basis for the null space of a matrix. Since 2 12
H HV H  is a 

3d d×  matrix, 1u  is chosen as 2d  basis vectors of the null space of 2 12
H HV H . 

In a similar fashion, the auxiliary receive filter 2u  for Rx 2 can be obtained as 

( )2 1 21
H Hnull⊂u V H                                                            (6) 

where 1 21
H HV H  is a 3d d×  matrix which has a 2d -dimensional null space. Thus, 2u  is 

determined as 2d  basis vectors of the null space of 1 21
H HV H . 

Next, the receive filter 3U  for Rx 3 is given by 

( ) ( )3 1 31 2 32 .
HH HH H H Hnull
  ⊂     

U V H V H                                          (7) 

Here, 3U  can be obtained as d  basis vectors of the null space of 

1 31 2 32( ) ( )
HH H H H H H  V H V H . 

Because the interfering links from Txs 1 and 2 to Rx 4 are aligned with each other, Rx 4 is 
able to consider two different interferers as one interferer which spans d  dimensional 
subspace. Therefore, the auxiliary receive filter 4u  can be constructed as 2d  linearly 

independent vectors of the null space of 1 41
H HV H : 

( )4 1 41 .H Hnull⊂u V H                                                               (8) 

So far, 6 interfering links from Tx 1 and Tx 2 are zero forced at the unintended Rxs. Notably, 
once all interfering links connected to a certain node have been eliminated, this node is 
discarded from the system in Fig. 1 (also in Fig. 3 and Fig. 5) for simplicity of exposition. 

2) Phase 2: One time slot is used in phase 2. Recall that Tx 4 conveys non-precoded pilots 
during the second time slot. This means that Rx 3 is capable of estimating the cross-link 
channel from Tx 4 to Rx 3, i.e., 34H . In time slot 3, Rx 3 feeds back 3 34

HU H  of size 3d d×  to 

Tx 4. As shown in Fig. 1(b), the design goal of the auxiliary precoders 3 2
4 C d d×∈v  is to 

cancel the interfering link between Tx 4 and Rx 3, i.e., 

( )4 3 34 .Hnull⊂v U H                                                              (9) 

Simply, 4v  is determined as 2d  basis vectors of the null space of 3 34
HU H , and thus Tx 4 

obtains its auxiliary precoder 4v . Besides, note that the randomly generated auxiliary 
precoder 3v  is already acquired at Tx 3 through the dimensionality-decreasing process. 

3) Phase 3: This phase spans 3 time slots. In time slot 4, Txs 3 and 4 transmit precoded pilot 
symbols using the obtained auxiliary precoders 3v  and 4v  respectively, so that Rx 1 and Rx 2 
can estimate the interfering channels from Txs 3 and 4. Now, as illustrated in Fig. 1(c), at each 
of Rx 1 and Rx 2, the interferences caused by Txs 3 and 4 should be aligned in the same 
subspace. To this end, two combining precoders 2

3 C d d×∈v  and 2
4 C d d×∈v  are designed to 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 11, November 2018                    5311 

satisfy the following interference aligning conditions: 

( ) ( )
( ) ( )

1 13 3 3 1 14 4 4

2 23 3 3 2 24 4 4

,

.

H H

H H

span span

span span

=

=

u H v v u H v v

u H v v u H v v

 

 

                                           (10) 

The combining precoders in (10) can be computed as 

( ) ( )( ) ( )( )
( ) ( )

1 1
3 1 13 3 1 14 4 2 24 4 2 23 3

1
4 2 24 4 2 23 3 3

,

,

H H H H

H H

eig
− −

−

=

=

v u H v u H v u H v u H v

v u H v u H v v



 

                    (11) 

where ( )eig A  stands for the matrix containing d  eigenvectors of A . 

In time slot 5, the matrix ( ) ( )1
1 13 3 1 14 4
H H−

u H v u H v  of size 2 2d d×  is delivered from Rx 1 

to Rx 2, and thus Rx 2 is able to obtain 3v  and 4v  according to (11). 
In time slot 6, Rx 2 feeds back 3v  and 4v  to the corresponding Txs, so that 3 3 3=V v v  is 

acquired at Tx 3 and 4 4 4=V v v  is obtained at Tx 4. Now, let us consider the remaining 
interfering links which are not cancelled so far. As can be seen in Fig. 1(c), the interference 
signals from Txs 3 and 4 are aligned together at each of Rxs 1 and 2, so that each of Rx 1 and 
Rx 2 with 2d  spatial dimensions created by the 2d  remaining antennas can keep its desired 
signal separate from the aligned interferences. Besides, Rx 4 with 2d  remaining antennas is 
able to guarantee d  interference-free dimensions after using zero-forcing to discard d  
dimensions occupied by the interference from Tx 3 to Rx 4. 

 
Table 1. Implementation of the proposed feedback topology for 4K =  

(a) The combining precoders 1v  and 2v  of size 2d d×  are sent from Rx 4 to the 
corresponding Txs; 

(b) Txs 1, 2 and 4 transmit pilot symbols; 

(c) The 3d d×  matrix 3 34
HU H  is delivered from Rx 3 to Tx 4; 

(d) Tx 3 and Tx 4 forward pilot symbols; 

(e) Rx 1 conveys ( ) ( )1
1 13 3 1 14 4
H H−

u H v u H v  of size 2 2d d×  to Rx 2; 

(f) Rx 2 feeds back 3v  and 4v  of size 2d d×  to the corresponding Txs. 

 
Finally, it is clear that a total of 12 cross-link interferences can be zero forced completely 

via the transceiver design shown in Fig. 1. Remarkably, in [12] and [13], counting the required 
number of time slots for the feedback topologies is terminated once all IA precoders are 
obtained at the Tx side. Obeying this counting criterion, 6 time slots are needed for the 
proposed feedback structure for 4K =  to implement IA, as shown in Table 1. In summary, 
adding up the CSI overhead in (a), (c), (e) and (f) in Table 1, the total CSI overhead in the 
proposed feedback topology for the case of 4K =  is 215d . 

3.3 Proposed Feedback Topology for 5K =  
For the 5K =  case where each node has 4d  antennas, dimensionality-decreasing is 
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performed at each of the K  Txs. It is worth pointing out that, in this case each of the auxiliary 
precoders of Tx 4 and Tx 5 is given as two cascaded precoders: the first auxiliary precoder is 
employed to carry out dimensionality-decreasing, and the second auxiliary precoder is 
designed to zero force interference. Here, we randomly pick the precoder 4

1 C d d×∈V  for Tx 1, 

the auxiliary precoders 4 2
2 C d d×∈v , 4 3

3 C d d×∈v  for Tx 2 and Tx 3 respectively, and the first 

auxiliary precoders (1) 4 3
4 C d d×∈v , (1) 4 3

5 C d d×∈v  for Tx 4 and Tx 5 respectively. 
 
 

(a) Phase 1

Zero-forcing IA

(c) Phase 3(b) Phase 2

1

2d 4d

d 4d

3d 4d

3d 4d

1

2 2

3 3

44

1

2d

3d

2d

3d d

1

2 2

3 3

44

1

2d

3d

2d

1

2 2

3 3

44

Txs Rxs Txs TxsRxs Rxs

2d

3d 4d 55 3d d 55 2d 55

 
Fig. 3. Illustration of how to eliminate all cross-link interferences when 5K =  

 
 

1) Phase 1: After applying the auxiliary precoders 2v  and 3v  at Txs 2 and 3 respectively,  
as depicted in Fig. 3(a), the interfering links from Txs 2 and 3 to Rx 1 can be aligned together 
via the design of the two combining precoders 2

2 C d d×∈v  and 3
3 C d d×∈v  which satisfy the 

condition: 

[ ] 2
12 2 13 3

3
0.

 
− = 

 

v
H v H v

v




                                                  (12) 

Since the size of the matrix [ ]12 2 13 3−H v H v  is 4 5d d× , it turns out that 2v  and 3v  can be 
computed definitely. Once the two combining precoders 2v  and 3v  are delivered from Rx 1 
to the corresponding Txs, the two precoders 2 2 2=V v v  and 3 3 3=V v v  are constructed at Tx 
2 and Tx 3, respectively.  
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(ii) Precoded pilots 
sending

2v
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Fig. 4. Illustration of the CSI signaling exchange procedure for the proposed feedback topology when 

5K =  
 

Then, as shown in Fig. 4, each of Txs 1, 2 and 3 transmits precoded pilot symbols using its 
precoder of size 4d d× , while Tx 4 and Tx 5 send precoded pilot symbols using (1)

4v  and (1)
5v  

respectively. After channel estimation, all interferences caused by Txs 1, 2 and 3 can be 
eliminated at the Rx side as shown in Fig. 3(a). To this end, the receive filter (or auxiliary 
receive filter) of Rx n , {1,2,3,4,5}n∈ , is designed to lie in the null space of the interference 
subspace containing the cross-link interferences from Txs 1, 2 and 3 to Rx n . In this way, the 
auxiliary receive filters 4 3

1 C d d×∈u , 4 2
2 C d d×∈u , 4 2

3 C d d×∈u , and the receive filters 
4

4 C d d×∈U , 4
5 C d d×∈U , are determined at the corresponding Rxs. Through the design of 

these receive filters (or auxiliary receive filters), we can equivalently think that Rxs 1, 2, 3, 4 
and 5 discard d , 2d , 2d , 3d  and 3d  dimensions respectively. 

2) Phase 2: During this phase, after Rx 4 estimates the effective channel between Tx 5 and 
Rx 4, i.e., (1)

45 5H v , it feeds back (1)
4 45 5
HU H v  of size 3d d×  to Tx 5. At the same time, Rx 5 

feeds back (1)
5 54 4
HU H v  of size 3d d×  to Tx 4. Therefore, as illustrated in Fig. 3(b), Tx 5 can 

avoid causing interference at Rx 4 by using the second auxiliary precoder (2) 3 2
5 C d d×∈v  which 

lies in the null space of (1)
4 45 5
HU H v . Once the first and second auxiliary precoders of Tx 5 are 

determined, the auxiliary precoder (1) (2)
5 5 5=v v v  is obtained at Tx 5. Similarly, Tx 4 can 

design its second auxiliary precoder (2) 3 2
4 C d d×∈v  to avoid generating interference at Rx 5, 

resulting in the acquisition of (1) (2)
4 4 4=v v v  at Tx 4. 

3) Phase 3: Tx 4 forwards precoded pilot symbols using its auxiliary precoder 4v  which is 
of size 4 2d d× . Meanwhile, Tx 5 sends precoded pilot symbols using the auxiliary precoder 

5v  which is of size 4 2d d× . As a result, Rxs 1, 2, and 3 are capable of estimating the 
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effective channels from Txs 4 and 5. 
As shown in Fig. 3(c), by designing the two combining precoders 2

4 C d d×∈v  and 
2

5 C d d×∈v , the interferences caused by Tx 4 and Tx 5 can be aligned at each of Rx 2 and Rx 3, 
i.e., 

( ) ( )
( ) ( )

2 24 4 4 2 25 5 5

3 34 4 4 3 35 5 5

,

.

H H

H H

span span

span span

=

=

u H v v u H v v

u H v v u H v v

 

 

                                      (13) 

The combining precoders 4v  and 5v  can be obtained as 

( ) ( )( ) ( )( )
( ) ( )

1 1
4 2 24 4 2 25 5 3 35 5 3 34 4

1
5 3 35 5 3 34 4 4

,

.

H H H H

H H

eig
− −

−

=

=

v u H v u H v u H v u H v

v u H v u H v v



 

               (14) 

To calculate 4v  and 5v  at Rx 3 according to (14), Rx 2 conveys the matrix 

( ) ( )1
2 24 4 2 25 5
H H−

u H v u H v  to Rx 3. Once computed, the combining precoders 4v  and 5v  are 

delivered from Rx 3 to the corresponding Txs, leading to the acquisition of 4 4 4=V v v  and 

5 5 5=V v v  at Tx 4 and Tx 5, respectively. 
Consider the remaining interfering links between Txs 4, 5 and Rxs 1, 2, 3 shown in Fig. 3(c). 

Since the interference signals from Tx 4 and Tx 5 are shrunk into the d  dimensional subspace 
at each of Rx 2 and Rx 3, each of Rx 2 and Rx 3 with 2d  remaining antennas is capable of 
making its desired signal orthogonal to the subspace spanned by the aligned interferences. 
Clearly, Rx 1 having 3d  remaining antennas can leave 2d  dimensions used for the 
occupation of the interferences from Tx 4 and Tx 5 while maintaining d  interference-free 
dimensions for the desired signal. Eventually, all 20 interfering links can be removed 
thoroughly through the transceiver design illustrated in Fig. 3. 
 

Table 2. Implementation of the proposed feedback topology for 5K =  
(a) 2v  of size 2d d×  and 3v  of size 3d d×  are fed back from Rx 1 to Tx 2 and Tx 3, 
respectively; 

(b) Each Tx sends precoded pilot symbols; 

(c) Rx 4 feeds back (1)
4 45 5
HU H v  of size 3d d×  to Tx 5, while Rx 5 conveys (1)

5 54 4
HU H v  

of size 3d d×  to Tx 4; 

(d) Tx 4 and Tx 5 transmit precoded pilot symbols; 

(e) ( ) ( )1
2 24 4 2 25 5
H H−

u H v u H v  of size 2 2d d×  is delivered from Rx 2 to Rx 3; 

(f) Rx 3 feeds back 4v  of size 2d d×  and 5v  of size 2d d×  to Tx 4 and Tx 5, 
respectively. 

 
In conclusion, for the case of 5K = , the proposed feedback design needs 6 time slots to 

make each IA precoder available at its corresponding Tx, which is shown in Table 2. Adding 
up the CSI overhead in (a), (c), (e) and (f) in Table 2, the total CSI overhead in the proposed 
feedback topology for 5K =  is 219d . 
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3.4 Proposed Feedback Topology for 6K ≥  
In this subsection, we extend our feedback design to the case of 6K ≥ . For the 6K ≥  case 
where each node is equipped with ( 1)K d−  antennas, dimensionality-decreasing is applied at 
each Tx. To be specific, we randomly generate a precoder of size ( 1)K d d− ×  at each of Txs 
1, 2,  , ( 4)K − , independently, so that each of these Txs equivalently has d  remaining 
antennas after applying the corresponding precoder. Additionally, we randomly pick the 
auxiliary precoders ( 1) 2

3 C K d d
K

− ×
− ∈v , ( 1) ( 2)

2 C K d K d
K

− × −
− ∈v  for Tx ( 3)K − , Tx ( 2)K −  

respectively, as well as the first auxiliary precoders (1) ( 1) ( 2)
1 C K d K d

K
− × −

− ∈v , 
(1) ( 1) ( 2)C K d K d
K

− × −∈v  for Tx ( 1)K − , Tx K  respectively. After applying these auxiliary 
precoders (or first auxiliary precoders), Tx ( 3)K −  equivalently has 2d  remaining antennas, 
and each of Txs ( 2)K − , ( 1)K − , K  equivalently remains ( 2)K d−  antennas. 
 

Txs Rxs
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Fig. 5. Illustration of how to eliminate all cross-link interferences when 6K ≥  

 
 

 1) Phase 1: As shown in Fig. 5(a), due to the remaining antennas at Txs ( 3)K −  and 
( 2)K − , the interference signals from these two Txs to Rx ( 4)K −  can be aligned in the 

same subspace at Rx ( 4)K −  by designing the combining precoders 2
3 C d d

K
×

− ∈v  and 
( 2)

2 C K d d
K

− ×
− ∈v . Once determined, 3K−v  and 2K−v  are conveyed from Rx ( 4)K −  to Tx 

( 3)K −  and Tx ( 2)K −  for the construction of the precoders 3K−V  and 2K−V  respectively. 
Then each of Txs 1, 2,  , ( 2)K −  sends precoded pilot symbols using its precoder of size 

( 1)K d d− × , while Tx ( 1)K −  and Tx K  forward precoded pilot symbols using (1)
1K−v  and 

(1)
Kv  respectively, for the purpose of channel estimation at the Rx side. 
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Fig. 6. Illustration of the elimination of interferences from Txs 1, 2,  , ( 2)K −  at the Rx side during 

phase 1 when 6K ≥  
 

After channel estimation, each Rx removes the interferences caused by Txs 1, 2,  , 
( 2)K − , leading to the determination of the receive filters (or auxiliary receive filters) as 
shown in Fig. 6. 
 

Table 3. Implementation of the proposed feedback topology for 6K ≥  
(a) Rx ( 4)K −  feeds back 2

3 C d d
K

×
− ∈v  and ( 2)

2 C K d d
K

− ×
− ∈v  to Tx ( 3)K −  and Tx 

( 2)K − , respectively;  

(b) Each Tx sends precoded pilot symbols; 

(c) Rx m , {1,2, ,( 5)}m K∈ −
, feeds back the ( 2)d K d× −  matrices 

(1)
( 1) 1

H
m m K K− −U H v  and (1)H

m mK KU H v  to Tx ( 1)K −  and Tx K  respectively, Rx K  feeds 
back the ( 2)d K d× −  matrix (1)

( 1) 1
H
K K K K− −U H v  to Tx ( 1)K − , and Rx ( 1)K −  

conveys (1)
1 ( 1)

H
K K K K− −U H v  of size ( 2)d K d× −  to Tx K ; 

(d) Tx ( 1)K −  and Tx K  transmit precoded pilot symbols; 

(e) Rx ( 3)K −  delivers the matrix ( ) ( )1
3 ( 3)( 1) 1 3 ( 3)

H H
K K K K K K K K

−

− − − − − −u H v u H v  of size 
2 2d d×  to Rx ( 2)K − ; 
(f) Rx ( 2)K −  feeds back 2

1 C d d
K

×
− ∈v  and 2C d d

K
×∈v  to Tx ( 1)K −  and Tx K , 

respectively. 
 
2) Phase 2: In this phase, as illustrated in Fig. 5(b), the second auxiliary precoder 

(2) ( 2) 2
1 C K d d

K
− ×

− ∈v  is designed to avoid creating interference at Rx m , {1,2, ,( 5)}m K∈ −
, 

as well as Rx K . Similarly, (2) ( 2) 2C K d d
K

− ×∈v  is determined by avoiding causing interference 

at Rx m  and Rx ( 1)K − . Therefore, in order to calculate (2)
1K−v  and (2)

Kv  at Tx ( 1)K −  and 
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Tx K  respectively, we implement step (c) of the proposed feedback topology shown in Table 
3. 

3) Phase 3: Once Tx ( 1)K −  and Tx K  acquire the auxiliary precoders (1) (2)
1 1 1K K K− − −=v v v  

and (1) (2)
K K K=v v v  respectively, these two Txs send precoded pilot symbols using the 

corresponding auxiliary precoders. Following the similar manner as that introduced in phase 3 
for the case of 5K = , step (e) of the proposed feedback topology in Table 3 is carried out to 
compute the combining precoders 1K−v  and Kv . Then the two computed combining 
precoders are fed back from Rx ( 2)K −  to the corresponding Txs. 

Finally, all interferences in the system can be eliminated completely. Adding up the CSI 
overhead in (a), (c), (e) and (f) in Table 3, the total CSI overhead in the proposed feedback 
topology for 6K ≥  is 2 2(2 11 24)K K d− + . 

Remark 1 (Tx Selection Criteria): When performing dimensionality-decreasing at the Tx 
side, the Tx selection order is not unique. For example, in the case of 5K = , after 
implementing dimensionality-decreasing, we let Txs 1, 2, 3, 4, 5 equivalently remain d , 2d , 
3d , 3d , 3d  antennas respectively in the proposed feedback topology, or alternatively we can 
set Txs 2, 1, 3, 4, 5 to equivalently have d , 2d , 3d , 3d , 3d  remaining antennas 
respectively. Although the Tx selection order has a direct impact on the choice of Txs and Rxs 
that participate in the alignment process, it does not affect the achievable DoF and the CSI 
overhead. For simplicity of exposition, in the proposed feedback topology, the Tx selection for 
dimensionality-decreasing is carried out in ascending order of the number of remaining 
antennas.  

Remark 2 (Antenna Selection Criteria): A precoding method is used for implementing 
dimensionality-decreasing to allow a certain Tx to remain N  (where d N M≤ < ) antennas 
in the proposed feedback topology. Also, the random antenna selection can be employed to 
achieve this goal by randomly selecting N  antennas and powering off others. If we exploit 
other antenna selection criterions, such as maximum post-processing SNR, maximum capacity 
[25], additional feedback information is required because a Rx delivers the optimal subset of 
transmit antennas to the corresponding Tx [25]. Note that the antenna selection and Tx 
selection mentioned in Remark 1 can be jointly optimized to improve the diversity gain at the 
cost of increased feedback overhead. Since the CSI overhead is the focus of this work, we 
leave a joint optimization of antenna selection and Tx selection with no impact on 
multiplexing gain (i.e., DoF) as the future work. 

Remark 3 (Forward Channel Training): In the proposed feedback topology, it is assumed 
that multiple Txs can simultaneously transmit orthogonal pilots with which the RXs are able to 
accurately estimate the cross-link forward channels. Note that this assumption is also exploited 
in the four-hop feedback topology in [13]. Although all existing feedback topologies except 
the four-hop topology require the acquisition of two estimated forward channels at each Rx to 
calculate IA precoders, the initial forward channel training procedure (i.e., initial pilot 
sending) of these five topologies is omitted in [12] and [13]. For the proposed feedback 
topology, it requires initial pilot sending, and also needs pilot sending in time slot 2 and time 
slot 4. It is clear that pilot transmission incurs pilot overhead [26]. Ignoring the pilot overhead 
caused by the initial pilot sending, the transmission of training sequences in time slots 2 and 4 
in the proposed feedback topology results in additional pilot overhead. Due to the fact that the 
CSI problem is a challenging issue for the application of IA [5], [14], we mainly concentrate 
on the CSI overhead in this work. 
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4. Comparison with Existing Topologies 
For the proposed feedback topology, at the Tx side, each column of a precoder is normalized to 
have unit norm after this precoder is obtained at its target Tx. Then equal power allocation is 
applied as in [12]. On the other hand, at the Rx side, once a receive filter is determined, it is 
normalized to unit norm at each column as in [12]. By employing the above design, from 
equation (2), the proposed feedback topology has the same performance as those feedback 
topologies in [12] in terms of average sum rate. Notably, [13] has not provided the power 
allocation strategy and the process of normalizing transmit/receive filters. Actually, if 
waterfilling power allocation, which is optimal in terms of sum rate, is employed, each Tx 
should know how to allocate power to data streams, resulting in extra feedback overhead. 
Therefore, equal power allocation requiring no feedback information about how much power 
should be allocated to each data stream is a feedback-saving strategy, and thus it is exploited in 
this paper and [12]. In summary, under the condition of equal power allocation and normalized 
transmit/receive filters, the feedback topologies in [12], [13] and this paper yield the same 
average sum rate. From the above discussions, as in [12] for the perfect CSI case and [13], in 
this section we only present the comparison of CSI overhead among various feedback 
topologies with the same DoF. 
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Fig. 7. CSI overhead comparison for the proposed feedback topology and existing topologies for the 

case of 1d =  
 

In Fig. 7, we provide the CSI overhead comparison for the existing feedback topologies in 
[12] and [13] and our proposed design according to different numbers of users. As can be seen 
in this figure, the proposed feedback topology yields a significant saving in CSI feedback 
overhead compared to the existing six feedback structures, meaning that a further saving of 
CSI overhead can be achieved in the field of feedback topology construction in spite of the 
existence of previously designed topologies. The saving of CSI overhead obtained by the 
proposed design comes from an efficient exploitation of dimensionality-decreasing and 
selection of a subset of Rxs receiving aligned interferences. Additionally, considering that the 
CSI-exchange topology and the four-hop design are the feedback topologies with the lowest 
CSI overheads in [12] and [13] respectively, a more detailed comparison of the feedback cost 
for these two feedback strategies and our proposed structure is illustrated in Table 4. This 
table further highlights the advantage of the proposed feedback topology in terms of CSI 
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overhead reduction. For example, for the case of 5K = , the CSI overhead of the proposed 
design is half that of the four-hop structure. 

In addition, consider the required number of time slots for the acquisition of IA precoders at 
the Tx side, which has a direct impact on the robustness of the transmission against channel 
variations. The required number of time slots for the proposed feedback topology is 6, which is 
equal to (for 4K = ) or less than (for 5K ≥ ) that of the CSI-exchange topology operating 
over 2( 1)K −  time slots, but greater than that of the four-hop structure operating over 4 time 
slots. Hence, it would be interesting in our future work to investigate the tradeoff between the 
CSI overhead reduction and the time slots needed for precoder acquisition. 

 
Table 4. CSI overhead comparison according to number of users K 

Feedback 
Topologies 

CSI Overhead (d=1) 
K=4 K=5 K=6 K=7 K=8 K=9 K=10 

CSI-Exchange [12] 27 48 75 108 147 192 243 
Four-Hop [13] 23 38 59 86 119 158 203 

Proposed 15 19 30 45 64 87 114 

5. Conclusion 
By arranging the feedback links in interference networks, feedback topology can reduce the 
CSI feedback overhead to an acceptable level. Although several feedback topologies have 
been presented in previous works, the design of feedback-saving strategy is still a research 
direction for facilitating the practical utilization of IA. In this paper, to seek a further reduction 
of CSI overhead, we propose a new feedback topology. The key idea of the proposed feedback 
topology is an efficient utilization of dimensionality-decreasing at the Tx side combined with 
the selection of a subset of Rxs receiving aligned interference signals. We illustrate the 
superiority of the proposed feedback design with respect to CSI overhead compared to the 
existing feedback topologies. 
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