• Title/Summary/Keyword: Channel Array

Search Result 609, Processing Time 0.03 seconds

An Effective Method to Form Side-Lobe Blanking Beam of Fully Digital Active Phased Array Antenna (완전 디지털 능동위상배열 안테나의 효과적인 부엽 차단 빔 형성 방법)

  • Joo, Joung-Myoung;Park, Jongkuk;Lim, Jae-Hwan;Lee, Jae-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.59-65
    • /
    • 2022
  • In this paper, a digital active phased array antenna is briefly introduced and beam forming method for a dual-channel side-lobe blanking applied to blank the side-lobe of the main beam is described. Next, the antenna performance was verified from results of design and antenna near-field measurement for the antenna main beam and side-lobe blanking beam. Then, a single-channel side-lobe blanking beam forming method was proposed to reduce the number of channels than the existing system operating dual-channel side-lobe blanking beam and weight distribution for each element of the side-lobe blanking antenna was designed with the proposed method. Finally, the designed single-channel side-lobe blanking beam pattern and blanking ability were verified and compared with the dual-channel side-lobe blanking beam. In addition, by comparing/verifying the conventional dual-channel and the proposed single-channel side-lobe blanking beam patterns measured through the receiving near-field test of the digital active phased array antenna and their ability to blank side-lobe of the main beam, validity of the proposed method for forming single-channel side-lobe blanking beam was confirmed.

Optimal Planar Array Architecture for Full-Dimensional Multi-user Multiple-Input Multiple-Output with Elevation Modeling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.234-244
    • /
    • 2017
  • Research interest in three-dimensional multiple-input multiple-output (3D-MIMO) beamforming has rapidly increased on account of its potential to support high data rates through an array of strategies, including sector or user-specific elevation beamforming and cell-splitting. To evaluate the full performance benefits of 3D and full-dimensional (FD) MIMO beamforming, the 3D character of the real MIMO channel must be modeled with consideration of both the azimuth and elevation domain. Most existing works on the 2D spatial channel model (2D-SCM) assume a wide range for the distribution of elevation angles of departure (eAoDs), which is not practical according to field measurements. In this paper, an optimal FD-MIMO planar array configuration is presented for different practical channel conditions by restricting the eAoDs to a finite range. Using a dynamic network level simulator that employs a complete 3D SCM, we analyze the relationship between the angular spread and sum throughput. In addition, we present an analysis on the optimal antenna configurations for the channels under consideration.

Bearing Estimate Error Correction Method for a Nested Array (네스티드 배열의 방위각 추정오차 보정기법)

  • 이장식;이정훈;이수형;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.110-115
    • /
    • 2001
  • In this paper, we propose a beamformer adequate for the nested away that is generally used for multiple frequency band signal processing. The nonisotropic beam pattern of channel in this array causes two problems: the bearing-estimate error of mainlobe and the difference between design and output in sidelobe level. By separating the time delay among channel signals and the time delay among sensor signals in channel, we can remove the effects of the nonisotropic beam pattern of channel in the beamformer output. Through this process, a method to correct simultaneously these problems is proposed.

  • PDF

HIGH QUALITY IMAGE ACQUSITION METHOD USING DUAL PANCHOMATIC CHANNEL

  • Chang, Young-Jun;Kim, Jung-Ah
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.203-206
    • /
    • 2007
  • The Space-borne electro-optical camera system has panchromatic redundant image channel as well as primary channel in order to increase reliability of satellite system. In most case redundant channel never been used during the whole mission period. Staggered array configuration using redundant image channel and new operation mode proposed which operates primary and redundant channel simultaneously. Without new hardware design, fast electronics and system complexity, we can get 1.414 times more fine GSD image of original system or we can get 1.414 times more SNR or High dynamic range imaging mode. In this paper we deal with several image quality improvement methods using dual panchromatic channel.

  • PDF

Performance of Parametric Array Communication System in Underwater AWGN Channel (수중 AWGN 채널에서의 파라메트릭 배열 통신 성능)

  • Lee, Jaeil;Lee, Chong Hyun;Bae, Jinho;Paeng, Dong-Guk;Kim, Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.294-300
    • /
    • 2013
  • In this paper, we present performance analysis results of parametric array communication system in terms of theoretical BER and channel capacity of MIMO in underwater AWGN channel by using simplified SNR of difference frequency. The SNR of the difference frequency is calculated by using transmission loss, noise level, and source level of difference frequency in which nonlinear effect is considered. By assuming primary frequencies as 210 kHz and 190 kHz, difference frequency as 20 kHz, transducer diameter as 0.1 m, and noise level as 50 dB and the requested BER as $10^{-4}$, we obtain parametric array communication range gains over the communication system using primary frequency of 59.11 km in fresh water and 5 km in sea water, respectively. Also we obtain range gains of 38.84 km and 46.38 km in fresh water, and 3.88 km and 4.38 km in sea water when we use SISO and $2{\times}2$ MIMO parametric array communications for the channel capacity of 10 bps/Hz.

Asymptotic Performance of ML Sequence Estimator Using an Array of Antennas for Coded Synchronous Multiuser DS-CDMA Systems

  • Kim, Sang G.;Byung K. Yi;Raymond Pickholtz
    • Journal of Communications and Networks
    • /
    • v.1 no.3
    • /
    • pp.182-188
    • /
    • 1999
  • The optimal joint maximum-likelihood sequence estima-for using an array of antennas is derived for synchronous direct sequence-code division multiple access (DS-CDMA) system. Each user employs a rate 1/n convolutional code for channel coding for the additive white Gaussian noise (AWGN) channel. The array re-ceiver structure is composed of beamformers in the users' direc-tions followed by a bank of matched filters. The decoder is imple-mented using a Viterbi algorithm whose states depend on the num-ber of users and the constraint length of the convolutional code. The asymptotic array multiuser coding gain(AAMCG)is defined to encompass the asymptotic multiuser coding gain and the spatial information on users' locations in the system. We derive the upper and lower bounds of the AAMCG. As an example, the upper and lower bounds of AAMCG are obtained for the two user case where each user employes the maximum free distance convolutional code with rate 1/2. The enar-far resistance property is also investigated considering the number of antenna elements and user separations in the space.

  • PDF

Combination of Array Processing and Space-Time Coding In MC-CDMA System

  • Hung Nguyen Viet;Fernando W. A. C
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.302-309
    • /
    • 2004
  • The transmission capacity of wireless communication systems may become dramatically high by employ multiple transmit and receive antennas with space-time coding techniques appropriate to multiple transmit antennas. For large number of transmit antennas and at high bandwidth efficiencies, the receiver may become too complex whenever correlation across transmit antennas is introduced. Reducing decoding complexity at receiver by combining array processing and space-time codes (STC) helps a communication system using STC to overcome the big obstacle that prevents it from achieving a desired high transmission rate. Multi-carrier CDMA (MC-CDMA) allows providing good performance in a channel with high inter-symbol interference. Antenna array, STC and MC-CDMA system have a similar characteristic that transmit-receive data streams are divided into sub-streams. Thus, there may be a noticeable reduction of receiver complexity when we combine them together. In this paper, the combination of array processing and STC in MC-CDMA system over slow selective-fading channel is investigated and compared with corresponding existing MC-CDMA system using STC. A refinement of this basic structure leads to a system design principle in which we have to make a trade off between transmission rate, decoding complexity, and length of spreading code to reach a given desired design goal.

  • PDF

The Direction Finding Ambiguity Analysis for 3 Element and 4 Element Phase Interferometer DF System (3소자 및 4소자 위상인터페로미터 방탐시스템의 방탐모호성분석)

  • Lee, Jung-Hoon;Woo, Jong-Myung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.544-550
    • /
    • 2014
  • In this paper, we have proposed a novel method which can analysis the direction finding ambiguity analysis for array geometry in 3 channel and 4 channel multiple baseline direction finding system. Generally, the direction finding ambiguity in the 3 element and 4 element phase interferometer direction finding system is calculated by the simulation for the array spacing or by the probability with the selected antenna array spacing. There are some restrictions to obtain the ambiguity of direction finding system in these methods. The former performs a simulation with every antenna array spacing and the latter calculates the ambiguity with the selected antenna array spacing. To overcome those restrictions, This paper proposed the novel method to calculate the ambiguity using the imaginary antenna array spacing and the phase difference prior to the modular operation in direction finder. Using the proposed method, we obtain the ambiguity probability for each of array geometry composed of multiple baseline. After performing the simulation with the selected antenna array spacing to verify the proposed method, we compared the calculated result data with the simulation data.

PRIMARY INSTABILITY OF THE CHANNEL FLOW WITH A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS - EFFECTS OF THE DISTANCE BETWEEN THE CYLINDER AND THE CHANNEL WALL - (원형 실린더가 주기적으로 배열된 채널 유동의 주 유동 불안정성 - 실린더와 채널 벽 간격의 영향 -)

  • Yoon, D.H.;Yang, K.S.;Kang, C.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.54-59
    • /
    • 2010
  • A parametric study has been carried out to elucidate the characteristics of channel flow with a streamwise-periodic array of cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to significant change in flow instabilities. There exist two kinds of instabilities; flow undergoes a primary instability (Hopf bifurcation) at a lower Reynolds number, and the unsteady two-dimensional flow becomes unstable to three-dimensional disturbances at a higher Reynolds number. We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent unsteady flow, including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinder and the channel wall.

A Study on a Multi-channel Fiber Optic Hydrophone System (다채널 광섬유 하이드로폰 배열 시스템에 관한 연구)

  • 김정석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.89-93
    • /
    • 2001
  • In recent years Fiber optic hydrophone systems have been the focus of much attention in the sonar world. For sonar arrays, a fiber optic approach offers the major benefit of passive multiplexing of large numbers of hydrophones without underwater electronics. This paper describes recent development work covering array construction, opto-electronics development, hydrohpone design and sea trials. And the development of an interferometric mult-channel fiber optic hydrophone system which uses time division multiplexing capable of driving in excess of 32 channel is described. For this, a 12 channel time division multiplexing array has been constructed, and the performance of this system is demonstrated by sea trial.

  • PDF