Browse > Article
http://dx.doi.org/10.7776/ASK.2013.32.4.294

Performance of Parametric Array Communication System in Underwater AWGN Channel  

Lee, Jaeil (제주대학교 해양과학대학 해양정보시스템공학과)
Lee, Chong Hyun (제주대학교 해양과학대학 해양정보시스템공학과)
Bae, Jinho (제주대학교 해양과학대학 해양정보시스템공학과)
Paeng, Dong-Guk (제주대학교 해양과학대학 해양정보시스템공학과)
Kim, Won-Ho (국방과학연구소 제6기술연구본부)
Abstract
In this paper, we present performance analysis results of parametric array communication system in terms of theoretical BER and channel capacity of MIMO in underwater AWGN channel by using simplified SNR of difference frequency. The SNR of the difference frequency is calculated by using transmission loss, noise level, and source level of difference frequency in which nonlinear effect is considered. By assuming primary frequencies as 210 kHz and 190 kHz, difference frequency as 20 kHz, transducer diameter as 0.1 m, and noise level as 50 dB and the requested BER as $10^{-4}$, we obtain parametric array communication range gains over the communication system using primary frequency of 59.11 km in fresh water and 5 km in sea water, respectively. Also we obtain range gains of 38.84 km and 46.38 km in fresh water, and 3.88 km and 4.38 km in sea water when we use SISO and $2{\times}2$ MIMO parametric array communications for the channel capacity of 10 bps/Hz.
Keywords
Parametric array communication; Underwater communication; Acoustic signal processing; BER; MIMO channel capacity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. F. W. Coates, M. Zheng and L. Wang "Technical Communications," IEEE J. Oceanic Eng. 21, 225-232 (1996).   DOI   ScienceOn
2 B. K. Novikov, O. V. Rudenko and V. I. Timoshenko, Nonlinear Underwater Acoustics (The American Institute of Physic, New York, 1987).
3 P. J. Westervelt "Parametric Acoustic Array," J. Acoust. Soc. Am. 35, 535-537 (1963).   DOI
4 H. O. Berktay and D. J. Leahy "Farfield performance of parametric transmitters," J. Acoust. Soc. Am. 55, 539-546 (1974).   DOI   ScienceOn
5 M. B. Moffett and R. H. Mellen "Model for parametric acoustic sources," J. Acoust. Soc. Am. 61, 325-337 (1977).   DOI
6 M. B. Moffett "Measurement of fundamental and second harmonic pressures in the field of a circular piston source," J. Acoust. Soc. Am. 65, 318-323 (1979).   DOI   ScienceOn
7 W. S. Gan, J. Yang, K. S. Tan and M. H. Er "A Digital Beamsteerer for Difference Frequency in a Parametric Array," IEEE Transactions on A. S. and L. Processing 14, 1018-1025 (2006).
8 L. Kopp, D. Cano, E. Dubois, L. Wang, B. Smith and R. F. W. Coates, "Potential Performance of Parametric Communications," IEEE J. Oceanic Eng. 25, 282-295 (2000).   DOI   ScienceOn
9 T. B. Pederson, "A Parametric SONAR Performance Calculator," J. Phys. Colloque. 40, 137-139 (1979).
10 X. Lurtont, An Introduction to Underwater Acoustics Principles and Applications (2nd edition, Springer, 2010).
11 F. H. Fisher and V. P. Simmons, "Sound absorption in sea water," J. Acoust. Soc. Am. 62, 558-564 (1977).   DOI
12 Peter H. Dahl, James H. Miller, Douglas H. Cato, Rex K. Andrew, "Underwater Ambient Noise," Acoustics Today 3. 23-33 (2007).   DOI
13 R. T. Beyer, "Parameter of Nonlinearity in Fluids," J. Acoust. Soc. Am. 32, 719-721 (1960).   DOI
14 M. J. Kim, Analog and Digital Communication Theory (Life & Power Press, 2007).
15 J. G. Proakis, M. Salehi, G. Bauch, Contemporary Communication Systems (Thomson Brooks/cole, 2004).
16 Y. S. Cho, J. K. Kim, W. Y. Yang, MIMO-OFDM Wireless Communications with MATLAB (Hongreung Science Publishing, 2008).