• Title/Summary/Keyword: Chain Matrix

Search Result 440, Processing Time 0.036 seconds

Possible different genotypes for human papillomavirus vaccination in lower middle-income countries towards cervical cancer elimination in 2030: a cross-sectional study

  • Tofan Widya Utami;Andrijono Andrijono;Andi Putra;Junita Indarti;Gert Fleuren;Ekaterina Jordanova;Inas Humairah;Ahmad Utomo
    • Clinical and Experimental Vaccine Research
    • /
    • v.11 no.2
    • /
    • pp.141-148
    • /
    • 2022
  • Purpose: Human papillomavirus (HPV) genotype and age distribution of HPV infection were crucial for the national vaccination and screening program planning. However, there was a limited study providing these data in the normal cervix population. This study aimed to explore the HPV genotypes profile of women with clinically normal cervix based on Visual Inspection of Acetic Acid (VIA) test. Materials and Methods: A 7-year cross-sectional study was conducted from 2012 to 2018 in private and public health care centers in Jakarta. Subjects were recruited consecutively. Data were collected by anamnesis, VIA, and HPV DNA test using the polymerase chain reaction (PCR; SPF10-DEIA-LiPA25) method. HPV genotyping procedures include DNA extraction, PCR (SPF10-DEIA-LiPA25) using the HPV XpressMatrix kit (PT KalGen DNA, East Jakarta, Indonesia), and hybridization. The IBM SPSS ver. 20.0 (IBM Corp., Armonk, NY, USA) were used to analyze the data. Results: A total of 1,397 subjects were collected. Positive HPV-DNA tests were found in 52 subjects (3.7%); 67% were single and 33% were multiple HPV infections. HPV 52 was the most frequently detected HPV genotype, followed by HPV 39, 16, 18 74, 44, 31, 54, and 66, respectively. The highest HPV infections in this population were in the 31-40 and 41-50 years old group. Conclusion: This study suggested beneficial screening for women aged 31-50 years old. Instead of "original" nonavalent (HPV 16, 18, 6, 11, 31, 33, 45, 52, 58), the different "nonavalent" formula for HPV vaccines protecting against HPV 16, 18, 6, 11, 31, 39, 44, 52, 74 might be useful for Indonesian population. However, further multicenter studies with a huge sample size are still needed.

In Situ-Forming Collagen/poly-γ-glutamic Acid Hydrogel System with Mesenchymal Stem Cells and Bone Morphogenetic Protein-2 for Bone Tissue Regeneration in a Mouse Calvarial Bone Defect Model

  • Sun-Hee Cho;Keun Koo Shin;Sun-Young Kim;Mi Young Cho;Doo-Byoung Oh;Yong Taik Lim
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.19
    • /
    • pp.1099-1111
    • /
    • 2022
  • Background: Bone marrow-derived mesenchymal stem cells (BMSCs) and bone morphogenetic protein-2 (BMP-2) have been studied for bone repair because they have regenerative potential to differentiate into osteoblasts. The development of injectable and in situ three-dimensional (3D) scaffolds to proliferate and differentiate BMSCs and deliver BMP-2 is a crucial technology in BMSC-based tissue engineering. Methods: The proliferation of mouse BMSCs (mBMSCs) in collagen/poly-γ-glutamic acid (Col/γ-PGA) hydrogel was evaluated using LIVE/DEAD and acridine orange and propidium iodide assays. In vitro osteogenic differentiation and the gene expression level of Col/γ-PGA(mBMSC/BMP-2) were assessed by alizarin red S staining and quantitative reverse-transcription polymerase chain reaction. The bone regeneration effect of Col/γ-PGA(mBMSC/BMP-2) was evaluated in a mouse calvarial bone defect model. The cranial bones of the mice were monitored by micro-computed tomography and histological analysis. Results: The developed Col/γ-PGA hydrogel showed low viscosity below ambient temperature, while it provided a high elastic modulus and viscous modulus at body temperature. After gelation, the Col/γ-PGA hydrogel showed a 3D and interconnected porous structure, which helped the effective proliferation of BMSCs with BMP-2. The Col/γ-PGA (mBMSC/BMP-2) expressed more osteogenic genes and showed effective orthotopic bone formation in a mouse model with a critical-sized bone defect in only 3-4 weeks. Conclusion: The Col/γ-PGA(mBMSC/BMP-2) hydrogel was suggested to be a promising platform by combining collagen as a major component of the extracellular matrix and γ-PGA as a viscosity reducer for easy handling at room temperature in BMSC-based bone tissue engineering scaffolds.

Effects of mechanical stress and interleukin-$1{\beta}$ on collagenase and TIMP-1 expression in human periodontal ligament fibroblasts (기계적 자극과 interleukin-$1{\beta}$가 치주인대 섬유아세포의 collagenase와 TIMP-1의 발현에 미치는 영향)

  • Kim, Myung-Lip;Bae, Chang
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.165-174
    • /
    • 1998
  • The turnover of collagen is controlled by the balance between collagen synthesis and degradation. The production of collagenase (matrix metalloproteinase-1) and its inhibitor, tissue inhibitor of matrix metallopmteinase-1 (TIMP-1) are one of the substances which regulate this balance. The periodontal ligament fibroblast plays an important role in collagen metabolism during orthodontic treatment and is believed to be an origin of the osteoblast in the alveolar bone. The collagenase secreted by the periodontal ligament fibroblast and the osteoblast initiates the bone resorption by removing the osteoid layer in the alveloar bone. The interleukin-$1{\beta}$ is secreted by the macrophage during orthodontic treatment. The present study was undertaken to assess the effect of mechanical stress and interleukin-$1{\beta}$ on the expression of collagenase and TIMP-1 in the periodontal ligament fibroblasts using reverse transcription polymerase chain reaction and immunohistochemical staining. The periodontal ligament fibroblasts were stitched by placing the $Petriperm dish^{\circledR}$ dish on the top of spheroidal convex watch glass ($5\%$ surface increase) and tented with interleukin-$1{\beta}$ (1.0 ng/ml), or treated with both of them. Treatment with mechanical stress and/or interleukin-$1{\beta}$ resulted in increased collagenase mRNA expression. The mechanical stress treated group (1.61, 1.62, 1.37 fold increase), the interleukin-$1{\beta}$, tented group (1.68, 1.60, 3.78 fold increase), the mechanical stress and interleukin-$1{\beta}$ treated group (1.89, 1.72, 5.48 fold increase) induced increases in collagenase mRNA compared with the control group after 2, 4, 8 hours respectively. But TIMP-1 mRNA expressions at experimental groups were decreased after 2, 4 hours and increased after 8 hours. The mechanical stress treated group (0.16, 0.49 fold decrease and 3.77 fold increase), the interleukin-$1{\beta}$ treated group (0.15,0.44 fold decrease and 4.46 fold increase), the mechanical stress and interleukin-$1{\beta}$ tented group (0.15, 0.69 fold decrease and 4.81 fold increase) induced changes in TIMP-1 mRNA compared with the control group after 2, 4, 8 hours, respectively. Immunohistochemical stain showed that increased collagenase and TIMP-1 staining of the mechanical stress tented group, the interleukin-$1{\beta}$ treated group, and the mechanical stress and interleukin-$1{\beta}$ treated group compared with that of the control group after 8 hours. These findings suggest that mechanical stress and interleukin-$1{\beta}$ regulate expression of collagenase and TIMP-1.

  • PDF

Sorption of PAHs by Soil Humins and Effect of Soil Inorganic Matrixs (PAHs의 토양휴민과의 흡착특성 및 토양 무기물의 영향 해석)

  • Lim, Dong-Min;Lee, Seung-Sik;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1337-1346
    • /
    • 2006
  • Soil humin is the insoluble fraction of humic materials and play an important roles in the irreversible sorption of hydrophobic organic contaminants onto soil particles. However, there have been limited knowledge about the sorption and chemical properties of humin due to the difficulties in its separation from the inorganic matrix(mainly clays and oxides). In this study, de-ashed soil humins($Hu_1-Hu_6$) were isolated from a soil residues(Crude Hu) after removing alkali-soluble organic fractions followed by consecutive dissolution of the mineral matrix with 2%-HF for 2 hr. The humin samples were characterized by elemental analysis and $^{13}C$ NMR spectroscopic method and their sorption-desorption behavior for 1-naphthol were investigated from aqueous solution. The results were compared one another and that with peat humin. $^{13}C$ NMR spectra features indicate that the soil humin molecules are mainly made up of aliphatic carbons(>80% in total carbon) including carbohydrate, methylene chain. Freundlich sorption parameter, n was increased from 0.538 to 0.697 and organic carbon-normalized sorption coefficient(log $K_{OC}$) values also increased from 2.43 to 2.74 as inorganic matrix of the soil humin removed by HF de-ashing. The results suggest that inorganic phase in humin plays an important, indirect role in 1-naphthol sorption and the effects on the sorption non-linearity and intensity are analyzed by comparison between the results of soil humin and peat humin. Sorption-desorption hysteresis were also observed in all the humin samples and hysteresis index(HI) at low solute concentration($C_e$=0.1 mg/L) are in order of Peat humin(2.67)>De-ashed humin(0.74)>Crude Hu(0.59).

Inhibition of Neointima Formation and Migration of Vascular Smooth Muscle Cells by Anti-vascular Endothelial Growth Factor Receptor-1 (Flt-4) Peptide in Diabetic Rats (당뇨병 쥐에서 혈관내피 성장인자 수용체-1 차단 펩타이드를 이용한 신내막 형성과 혈관평활근세포 이동의 억제)

  • Jo, Min-Seop;Yoo, Ki-Dong;Park, Chan-Beom;Cho, Deog-Gon;Cho, Kue-Do;Jin, Ung;Moon, Kun-Woong;Kim, Chul-Min;Wang, Young-Pil;Lee, Sun-Hee
    • Journal of Chest Surgery
    • /
    • v.40 no.4 s.273
    • /
    • pp.264-272
    • /
    • 2007
  • Background: Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis, including stimulating the proliferation and migration of vascular smooth muscle cells (VSMCs). It has been known that diabetes is associated with accelerated cellular proliferation via VEGF, as compared to that under a normal glucose concentration. We investigated the effects of selective blockade of a VEGF receptor by using anti-Flt-1 peptide on the formation and hyperplasia of the neointima in balloon injured-carotid arteries of OLETF rats and also on the in vitro VSMCS' migration under high glucose conditions. Material and Method: The balloon-injury method was employed to induce neointima formation by VEGF. For f4 days beginning 2 days before the ballon injury, placebo or vascular endothelial growth factor receptor-1 (VEGFR-1) specific peptide (anti-Flt-1 peptide), was injected at a dose of 0.5mg/kg daily into the OLETF rats. At 14 days after balloon injury, the neointimal proliferation and vascular luminal stenosis were measured, and cellular proliferation was assessed by counting the proliferative cell nuclear antigen (PCNA) stained cells. To analyze the effect of VEGF and anti-Flt-1 peptide on the migration of VSMCs under a high glucose condition, transwell assay with a matrigel filter was performed. And finally, to determine the underlying mechanism of the effect of anti-Flt-1 peptide on the VEGF-induced VSMC migration in vitro, the expression of matrix metalloproteinase (MMP) was observed by performing reverse transcription-polymerase chain reaction (RT-PCR). Result: Both the neointimal area and luminal stenosis associated with neointimal proliferation were significantly decreased in the anti-Flt-1 peptide injected rats, ($0.15{\pm}0.04 mm^2$ and $ 36.03{\pm}3.78%$ compared to $0.24{\pm}0.03mm^2\;and\;61.85{\pm}5.11%$, respectively, in the placebo-injected rats (p<0.01, respectively). The ratio of PCNA(+) cells to the entire neointimal cells was also significantly decreased from $52.82{\pm}4.20%\;to\;38.11{\pm}6.89%$, by the injected anti-Flt-1 peptide (p<0.05). On the VSMC migration assay, anti-Flt-1 peptide significantly reduced the VEGF-induced VMSC migration by about 40% (p<0.01). Consistent with the effect of anti-Flt-1 peptide on VSMC migration, it also obviously attenuated the induction of the MMP-3 and MMP-9 mRNA expressions via VEGF in the VSMCS. Conclusion: Anti-Flt-1 peptide inhibits the formation and hyperplasia of the neointima in a balloon-injured carotid artery model of OLETF rats. Anti-Flt-1 peptide also inhibits the VSMCs' migration and the expressions of MMP-3 and MMP-9 mRNA induced by VEGF under a high glucose condition. Therefore, these results suggest that specific blockade of VEGFR-1 by anti-Flt-1 peptide may have therapeutic potential against the arterial stenosis of diabetes mellitus patients or that occurring under a high glucose condition.

Effect of Inhibition Macrophage Migration Inhibitory Factor Activation by Hominis Placenta Herbal Acupuncture on Rheumatic Arthritis (자하차약침(紫河車藥鍼)의 MIF 활성 억제를 통한 LPS 유발 류마티스성 관절염의 치료 효과)

  • Hwang, Ji-Hye;Cho, Hyun-Seok;Lee, Hyun-Jin;Lee, Dong-Gun;Jeong, Won-Je;Jung, Chan-Yung;Kim, Kyung-Ho
    • Journal of Acupuncture Research
    • /
    • v.25 no.3
    • /
    • pp.41-51
    • /
    • 2008
  • Objectives : This study is to evaluate Effect of Inhibition Macrophage Migration Inhibitory Factor(MIF) activation by Hominis Placenta Herbal Acupuncture(HPA) on Rheumatic Arthritis(RA). Hominis Placenta is the placenta of healthy human, which is vital-strengthening medical stuff. In recent years, Hominis Placenta applied to chronic diseases because it makes us more resistance to diseases. Therefore it is supposed that HPA is effective on RA, a kind of autoimmune disease. When RA is induced, MIF is activated, too. MIF affects the process of inflammatory disease including RA. Methods : In order to investigate the effect of Hominis Placenta extraction on MIF(early RA inducing cytokine) and MMP(Matrix Metallo Proteinase)-9 mRNA expression by means of Reverse Transcriptase- Polymerase Chain Reaction(RT-PCR). In this study, we investigated the effect of Hominis Placenta extraction on MIF(early RA inducing cytokine) and MMP-9 mRNA expression by means of RT-PCR. Besides we investigated changing of MIF in synovial membrane and, Interleukin-6 receptor(IL-6R)-$\alpha$(pro-inflammatory cytokine), Signal transducers and activators of transcription(STAT)-3, MMP-9 after treating mouse, which is artificially attacked with RA, with HPA on its $ST_{35}$, LE201 in vivo. Results : 1. As a result of treating Lipopolysaccharide(LPS)-stimulated Raw246.7cell with HPA, MIF(RA related cytokine) and MMP-9 mRNA expression is reduced in vitro. And this reaction is concentration-dependatant. 2. In synovial membrane of the mice treated with HPA, inhibition of MIF, IL-6R-$\alpha$, STAT3 & MMP-9 activation is observed in vivo. Conclusions : From the above results, it might be suggested that HPA mitigate tissue damage originated from RA, because it intercepts the early process of by inhibition MIF activity.

  • PDF

The Study on the SEP (Standard Essential Patents) Procurement Strategy to accelerate the Trade Negotiation Competitiveness (통상 협상의 경쟁력 강화를 위한 표준특허 확보전략 연구)

  • Cho, Dongmin;Cho, Wongil
    • International Commerce and Information Review
    • /
    • v.18 no.4
    • /
    • pp.263-281
    • /
    • 2016
  • The Importance of SEP (Standard Essential Patents) Procurement Operation is on the side of Governmental and Public both to accelerate the national trade negotiation competitiveness. To operate cooperative system of SEP creation and management, Government should monitor the effect and performance periodically to public sectors. and To achieve the support objectives, it should establish the virtuous circle infrastructure between R&D and economic performance on SEP. This can make the SEP enhancement to pursue the international competitiveness on Intellectual Property Rights. Especially the specific support approach to each phase of the SEP declaration matrix is essential to consolidate the possibility of SEP creation and acquisition. In this study, the concepts of SEP to accelerate the national trade negotiation competitiveness and the prior research were verified through the investigation of market trend and current state of affair analysis. Through the analysis of international and domestic situation of SEP procurement and management, We have found the results as follows. First of all, the leading conglomerates and the Government should focus on the secondary and tertiary industries to create and acquire SEPs to accomplish the effectiveness of selection and concentration. In second, the SMEs and Univ. Labs should focus on the quaternary sector of the economy to retain the competitiveness of speed and challenge on SEP related. From this study, the appropriateness of the tailored-support management model should be institutionalized, and the results implied an research in order to examine the suitability among the current SEP to enhance the competitiveness of national trade research issues.

  • PDF

Effects of Ipriflavone on bone remodeling in the rat calvarial cell (백서 두개관세포에서 Ipriflavone이 골조직 개조에 미치는 영향)

  • Lee, Yong-Seung;Kim, Young-Jun;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.275-285
    • /
    • 2005
  • Ipriflavone (isoprofoxyisoflavone), a synthetic derivative from soy isoflavone diazein, has been shown to inhibit bone resorption and perhaps stimulate bone formation This study was performed to examine the effects of ipriflavone on the proliferation and bone remodeling in rat calvarial cells in vitro The rat calvarial cells were isolated from fetus aged 20 to 21 days and cultured In BGJb media The graded concentration of ipriflavone $(10^{-9}\;10^{-5}M)$ was administered into cultured cells. When the cell proliferation was estimated through the measurement of MTT assay, there was no increase in cellular proliferation of the rat calvarial cell at any ipriflavone concentration. The cellular activity was evaluated through the formation of mineralized nodules stained by alizarin red. The formation of mineralized nodules significantly increased at concentrations of $10^{-8}M,\;10^{-7}M\;and\;10^{-6}M$ ipriflavone. Reverse transcription-polymerase chain reaction analyses (RT-PCR) were done at 7 and 14 days after culture to detect the expression of Bone Sialoprotein (BSP), Type I Collagen (COL I) and Osteocalcin(OCN) As a result, the expressions of BSP and COL I increased on the 7th day of culture and the expression of OCN increased on the 14th day of culture. These results indicate that ipriflavone facilitates the bone remodeling process bvy promoting rat calvarial cell differentiation aid stimulating mineralization through increased expression of extracellular matrix genes. such as BSP. COL I and OCN.

The effect of rhBMP-2 on the osteoblastic differentiation of human periodontal ligament cells and gingival fibroblasts in vitro (치주인대세포와 치은섬유아세포의 분화에 미치는 rhBMP-2의 효과에 대한 연구)

  • Kim, Hyeon-Jong;Choi, Sang-Mook;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.389-402
    • /
    • 2002
  • BMP can induce ectopic bone formation when implanted into sites such as rat muscle and can greatly enhance healing of bony defects when applied exogenously. In addition, BMP stimulated osteoblastic differentiation in vitro in various types of cells. The aim of this study was to investigate the effect of recombinant human bone morphogenetic protein(rhBMP-2) on the proliferation and osteoblastic differentiation of human periodontal ligament cells and gingival fibroblasts. The cell number and alkaline phosphatase activity were measured in 3 experimental groups of human periodontal ligament cells and gingival fibroblasts (control group, rhBMP-2 50ng/ml group, and rhBMP-2 100ng/ml group) at 1 and 2 weeks after culture. At the same time, total RNA of cultured cells were extracted and reverse trascription polymerase chain reaction(RT-PCR) was performed to determine the expression of mRNA of bone matrix protein. RhBMP-2 had no effect on the cell proliferation of human periodontal ligament cells and gingival fibroblasts. Alkaline phosphatase activity was elevated significantly by rhBMP-2 in both cells. And periodontal ligament cells showed significantly higher alkaline phosphatase activity than gingival fibroblasts. ${\beta}$-actin, type I collagen, alkaline phosphatase, BMP-2 mRNA were expressed in all of the samples. Osteopontin, osteocalcin mRNA were expressed in all periodontal ligament cell groups, and rhBMP-2 50ng/ml group, rhBMP-2 100ng/ml group of 2 week culture period of gingival fibroblasts. Bone sialoprotein mRNA was only expressed in rhBMP-2 50ng/ml group and rhBMP-2 100ng/ml group of 2-week culture period. These results suggest that rhBMP-2 stimulates osteoblastic differentiation in human periodontal ligament cells and gingival fibroblasts in vitro.

Cucurbitacin-I, a Naturally Occurring Triterpenoid, Inhibits the CD44 Expression in Human Ovarian Cancer Cells (난소암 세포주의 CD44 발현에 미치는 Cucurbitacin-I의 효과)

  • Seo, Hee Won;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.733-737
    • /
    • 2018
  • Cucurbitacin-I, a natural triterpenoid derived from Cucurbitaceae family plants, exhibits a number of potentially useful pharmacological and biological activities. Indeed, the previous study demonstrated that cucurbitacin-I reduced the proliferation of colon cancer cells by enhancing apoptosis and causing cell cycle arrest at the G2/M phase. CD44, a type I transmembrane protein with the function of adhering to cells, mediates between the extracellular matrix and other cells through hyaluronic acid. Recent studies have demonstrated that an overexpression of the CD44 membrane receptor results in tumor initiation and growth, specific behaviors of cancer stem cells, the development of drug resistance, and metastasis. The aim was to examine the effect of cucurbitacin-I on CD44 expression human ovarian cancer cells because the effect of cucurbitacin-I on CD44 expression has not been reported. The expressions of CD44 mRNA and protein were detected using a quantitative real-time reverse-transcription polymerase chain reaction and a Western blot analysis, respectively. Treatment with cucurbitacin-I inhibited the expression of CD44 mRNA and protein. A subsequent analysis revealed that cucurbitacin-I blocked the phosphorylation of activator protein-1 (AP-1) and nuclear factor kappa-B ($NF-{\kappa}B$), which are key regulators of CD44 expression. Taken together, the data demonstrate that cucurbitacin-I regulates the AP-1 and $NF-{\kappa}B$ signaling pathways, leading to decreased CD44 expression.