Sorption of PAHs by Soil Humins and Effect of Soil Inorganic Matrixs

PAHs의 토양휴민과의 흡착특성 및 토양 무기물의 영향 해석

  • Lim, Dong-Min (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Lee, Seung-Sik (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Technology)
  • 임동민 (서울산업대학교 환경공학과) ;
  • 이승식 (서울산업대학교 환경공학과) ;
  • 신현상 (서울산업대학교 환경공학과)
  • Published : 2006.12.31

Abstract

Soil humin is the insoluble fraction of humic materials and play an important roles in the irreversible sorption of hydrophobic organic contaminants onto soil particles. However, there have been limited knowledge about the sorption and chemical properties of humin due to the difficulties in its separation from the inorganic matrix(mainly clays and oxides). In this study, de-ashed soil humins($Hu_1-Hu_6$) were isolated from a soil residues(Crude Hu) after removing alkali-soluble organic fractions followed by consecutive dissolution of the mineral matrix with 2%-HF for 2 hr. The humin samples were characterized by elemental analysis and $^{13}C$ NMR spectroscopic method and their sorption-desorption behavior for 1-naphthol were investigated from aqueous solution. The results were compared one another and that with peat humin. $^{13}C$ NMR spectra features indicate that the soil humin molecules are mainly made up of aliphatic carbons(>80% in total carbon) including carbohydrate, methylene chain. Freundlich sorption parameter, n was increased from 0.538 to 0.697 and organic carbon-normalized sorption coefficient(log $K_{OC}$) values also increased from 2.43 to 2.74 as inorganic matrix of the soil humin removed by HF de-ashing. The results suggest that inorganic phase in humin plays an important, indirect role in 1-naphthol sorption and the effects on the sorption non-linearity and intensity are analyzed by comparison between the results of soil humin and peat humin. Sorption-desorption hysteresis were also observed in all the humin samples and hysteresis index(HI) at low solute concentration($C_e$=0.1 mg/L) are in order of Peat humin(2.67)>De-ashed humin(0.74)>Crude Hu(0.59).

토양휴민(Hu)은 불용성 휴믹물질 성분으로서 소수성 유기화합물의 비가역적 토양흡착에 중요한 역할을 담당하는 것으로 알려진다. 그러나 휴민분자는 대부분 토양 무기물(점토 및 금속산화물) 성분과의 혼합 상태로 존재하기 때문에 순수분리가 어려워 물질특성과 반응성에 대한 정보는 제한적이다. 본 연구에서는 알칼리 용해성 토양 유기물을 제거한 잔류토양(Crude 휴민)을 대상으로 HF(2%) 처리를 통한 일련의 정제휴민 시료($Hu_1-Hu_6$)를 확보하였고, 원소분석과 $^{13}C$ NMR 분석을 통한 물질특성 및 1-naphthol과의 흡착-탈착 특성을 조사하였다. 비교시료로서 피트에서 추출한 휴민에 대하여도 동일한 실험을 수행하였고, 그 결과는 토양휴민과 비교 분석하였다. $^{13}C$ NMR 분석결과 토양휴민 분자는 탄수화물과 파라핀 계열의 지방족사슬 탄소성분 함량이 전체 유기탄소의 80% 이상을 차지하는 높은 지방족성을 보였다. 1-naphthol과의 흡착실험 결과, HF 정제에 따라 무기물 성분이 제거될수록 Freundlich 흡착상수 n값이 0.538에서 0.697로 일정하게 증가하였으며, 유기탄소-표준화분배계수(log $K_{OC}$) 값도 2.43에서 2.74로 증가하였다. 이는 휴민시료에 존재하는 무기물 성분이 1-naphthol의 흡착에 관여하고 있음을 나타내며, 피트휴민의 결과와 함께 흡착의 비선형성과 흡착세기에 대한 무기물 성분의 영향을 설명하였다. 탈착실험 결과, 모든 휴민시료에서 흡착-탈착 hysteresis가 관찰되었으며, 낮은 용질농도($C_e$=0.1 mg/L)에서의 hysteresis index(HI)는 피트휴민(2.697)>정제휴민(0.738)>Crude 휴민(0.593)의 순으로 나타났다.

Keywords

References

  1. IPCS environmental health criteria 202, 'Selected non-heterocyclic polycyclic aromatic hydrocarbons,' World Health Organization, Geneva(1998)
  2. US Environmental Protection Agency, electronic source, http://www.epa.gov/ttn/atw/hlthef(2003)
  3. Chiou, C. T., McGroddy, S. E., Kile, D. E., 'Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments,' Environ. Sci. Technol., 32, 264-269(1998) https://doi.org/10.1021/es970614c
  4. Luthy, R. G., Aiken, G. R., Brusseau, M. L., Cunning-ham, S. D., Gschwend, P. M., Pignatello, J. J., Reinhard, M., Traina, S, J., Weber Jr., W. J., and Westall, J. C., 'Sequestration of hydrophobic organic contaminants by geosorbents,' Environ. Sci. Technol., 31, 3341-3347(1997) https://doi.org/10.1021/es970512m
  5. Stohs, S. J., Ohia, S., and Bagchi, D., 'Naphthalene toxicity and antioxidant nutrients,' Toxicology, 180, 97-195(2002) https://doi.org/10.1016/S0300-483X(02)00384-0
  6. Aiken, G. R., MaKnight, D. M., and Wershaw, R. L. (eds.), Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation, and Characterization, John Wiley and Sons, USA, pp. 1-12(1985)
  7. Rice, J. A., 'Humin,' Soil Sci., 166(11), 848-857(2001) https://doi.org/10.1097/00010694-200111000-00009
  8. Wershaw, R. L. and Mikita, M. A., 'NMR of humic substances and coal,' Lewis Publisher, Michigan(1987)
  9. Song, J., Peng, P., and Huang, W., 'Black carbon and kerogen in soils and sediements. 1. Quantification and characterization,' Environ. Sci. Technol., 36, 3960-3967(2002) https://doi.org/10.1021/es025502m
  10. Preston, C. M., 'Application of NMR to soil organic matter analysis: history and prospects,' Soil Sci., 161, 144-166(1996) https://doi.org/10.1097/00010694-199603000-00002
  11. Preston, C. M., Schnitzer, M., and Ripmeester, J. A., 'A Spectroscopic and chemical investigation on the deashing of a humin,' Soil Sci. Soc. Am. J., 53, 1442-1447(1989) https://doi.org/10.2136/sssaj1989.03615995005300050023x
  12. Huang, W., Peng, P., Yu, Z., and Fe, J., 'Review: Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments,' Appl. Geochem., 18, 955-972(2003) https://doi.org/10.1016/S0883-2927(02)00205-6
  13. Salloum, M. J., Dudas, M. J., and McGill, W. B., 'Variation of 1-naphthol sorption with organic matter fractionation: The role of physical configuration,' Org. Geochem, 32, 709-719(2001) https://doi.org/10.1016/S0146-6380(01)00007-9
  14. Renhun, M., Kalabo, R., Grossman, L., Manka, J., and RavAcha, C., 'Sorption of organics on clay and synthetic humic-clay complexes simulating aquifer processes,' Water Res., 26, 79-84(1992) https://doi.org/10.1016/0043-1354(92)90114-J
  15. Laor, Y., Farmer, W. J., Aochi, Y., and Strom, P. F., 'Phenanthrene binding and sorption to dissolved and to mineral-associated humic acid,' Water Res., 32, 1923-1931(1998) https://doi.org/10.1016/S0043-1354(97)00405-3
  16. Jones, K. D. and Tiller, C. L., 'Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic aicd: a comparison of dissolved and clay bound humic,' Environ. Sci. Technol., 33, 580-587(1999) https://doi.org/10.1021/es9803207
  17. 이창훈, 유지호, 신현상, 정근호, 이창우, '국내토양휴믹 물질의 특성규명 및 DB 구축에 대한 연구,' 한국지하수 토야환경학회 춘계학술대회, pp. 397-400(2003)
  18. MacCharthy, P., 'A proposal to establish a reference collection of humic materials from inter-laboratory comparisons,' Geoderma, 16, pp. 179-181(1995)
  19. Tremblay, L., Kohl, S. D., Rice, J. A., and Gagne, J-P., 'Effect of lipid oh the sorption of hydrophobic compounds on geosorbents: a case study using phenanthrene,' Chemosphere, 58, 1609-01620(2005) https://doi.org/10.1016/j.chemosphere.2004.11.073
  20. 이창훈, 신현상, 강기훈, '피트모스에서 추출한 휴믹물질(휴믹산, 풀빅산, 휴민)의 화학적 및 분광학적 물질특성 규명,' 한국지하수토양환경학회지, 9(4), 42-51(2004)
  21. Preston, C. M. and Newman, R. H., 'Demonstration of spatial heterogeneity in the organic matter of de-ashed humin samples by solid-state $^{13}C$ CPMAS NMR,' Can. J. Soil Sci., 72, 13-19(1992) https://doi.org/10.4141/cjss92-002
  22. Leenheer, J. A., McKnight, D. M., Thurman, E. M., and MacCarthy, P., Humic Substances in the Suwannee River, Georgia: Interactions, Properties, and Proposed Structure, US Geology Survey, Open-File Report 85-557, Denver, Colorado(1989)
  23. Kan, A. T., Fu, G., and Tomson, M. B., 'Adsorption/desorption hysteresis in organic pollutants and soil/sediment interaction,' Environ. Sci. Technol., 28, 859-867(1994) https://doi.org/10.1021/es00054a017
  24. Almendros, G., Guadalix, M. E., Gonzalez-Vila, F. J., and martin, F., 'Preservation of aliphatic macromolecules in soil humin,' Org. Geochem., 24, 651-659(1996) https://doi.org/10.1016/0146-6380(96)00056-3
  25. Lichtfouse, E., Chenu, C., and baudin, F., 'Resistant ultraminae in soils,' Org. Geochem., 25, 263-265(1996) https://doi.org/10.1016/S0146-6380(96)00126-X
  26. Shin, H. S. and Moon, H., 'An 'Average' Structure Proposed for Soil Fulvic Acid Aided by DEPT/QUAT $^{13}C$ NMR Pulse Techniques,' Soil Sci., 161, 250-256(1996) https://doi.org/10.1097/00010694-199604000-00006
  27. Benjamin, M. M., Water Chemistry, McGraw-Hill Higher Edu., Singapor, pp. 558-567(2002)
  28. Xu, F., Bhandari, A., and Asce, M., 'Retention and distribution of 1-naphthol and naphthol polymerization products on surface soils,' J. Environ. Eng., 129, 1041-1050(2003) https://doi.org/10.1061/(ASCE)0733-9372(2003)129:11(1041)
  29. Sheng, G., Johnston, C. T., Teppen, B. J., and Boyd, S. A., 'Potential contributions of semectite clays and organic matter to pesticide retention in soils,' J. Agric. Food Chem., 49(6), 2899-2907(2001) https://doi.org/10.1021/jf001485d
  30. Carmo, A. M., Hundal, L. S., and Thompson, M. K., 'Sorption of hydrophobic organic compounds by soil materials: Application of unit equivalent Freundlich coefficient,' Environ. Sci. Technol., 34, 4363-4369(2000) https://doi.org/10.1021/es000968v
  31. Peuravuori, J., 'Binding of pyrene on lake aquatic humic matter; the role of structural descriptors,' Anal. Chim. Acta, 429, 75-89(2001) https://doi.org/10.1016/S0003-2670(00)01259-9
  32. Salloum, M. J., Chefftz, B., and Hatcher, P. G., 'Phenanthrene sorption by aliphatic-rich natural organic matter,' Environ. Sci. Technol., 36, 1953-1958(2002) https://doi.org/10.1021/es015796w
  33. Parikh, S. J., Chorover, J., and Burgos, W. D., 'Interaction of phenanthrene and its primary metabolite(1-hydroxy-2-naphthoic acid) with estuarine sediments and humic fractions,' J. Contam. Hydrol., 72, 1-22(2004) https://doi.org/10.1016/j.jconhyd.2003.10.004
  34. Huang, W. and Weber Jr., W. J., 'A distributed reactivity model for sorption by soils and sediments: 10. Relationship between desorption, hysteresis, and chemical characteristics of organic domains,' Environ. Sci. Technol., 31, 2562-2569(1997) https://doi.org/10.1021/es960995e
  35. Weber Jr., W. J., Huang, W., and Yu, H., 'Hysteresis in the sorption and desorption of organic contaminants by soils and sediments: 2. Effects of soil organic matter heterogeneity,' J. Contam. Hydrol., 31, 149-165(1998) https://doi.org/10.1016/S0169-7722(97)00059-4
  36. Huang, W. and Weber Jr., W. J., 'A distributed reactivity model for sorption by soils and sediments: 11. Slow concentration-dependent sorption rate,' Environ. Sci. Technol., 32, 3549-3555(1998) https://doi.org/10.1021/es970764n
  37. Oren, A. and Chefetz, B., 'Soeption-desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments,' Chemosphere, 61, 19-29(2005) https://doi.org/10.1016/j.chemosphere.2005.03.021
  38. Chefetz, B., polubesova, T., and Bilkis, Y. I., 'Sorption-desorption behavior of triazine herbicides in Kishon river sediments,' Water Res., 38, 4383-4394(2004) https://doi.org/10.1016/j.watres.2004.08.023