• Title/Summary/Keyword: Cerium oxide ($CeO_2$)

Search Result 51, Processing Time 0.02 seconds

Synthesis of nano Cerium(IV) oxide from recycled Ce precusor (재생 세륨 전구체로부터 나노산화세륨(IV)합성)

  • Kang, Tae-Hee;Koo, Sang-Man;Jung, Choong-Ho;Hwang, Kwang-Taek;Kang, Woo-Kyu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.101-107
    • /
    • 2013
  • Cerium compounds such as Cerium hydroxide ($Ce(OH)_3$), Cerium chloride ($CeCl_3{\cdot}nH_2O$), Cerium carbonate hydrate ($Ce_2(CO_3)_3{\cdot}8H_2O$), Cerium oxide ($CeO_2$) were synthesized using recycled Ce precursor. Cerium(IV) oxide of nanoparticles were obtained by Ultra-sonication. Cerium-sodium- sulfate compound was synthesized through acid-leaching and addition of sodium sulfate from 99 wt% purity of Ce precursor as a starting material that was recycled from the waste polishing slurry. Moreover Cerium hydroxide was obtained from Cerium-sodium-sulfate compound by adding to sodium hydroxide solution. Then Cerium chloride was synthesized by adding of hydrochloric acid to Cerium hydroxide. Needle-shaped Cerium carbonate hydrate was synthesized in the continuous process and Cerium(IV) oxide with 30~40 nm size was subsequently obtained by the calcinations and dispersion.

Toluene Catalytic Oxidation by Manganese-Cerium Bimetallic Catalysts (Mn-Ce 복합 산화물에 의한 톨루엔 촉매 산화)

  • Cheon Tae-Jin;Choi Sung-Woo;Lee Chang-Soep
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.427-433
    • /
    • 2005
  • Activity of manganese oxide supported on ${\nu}-Al_2O_3$ was increased when cerium was added. Also, cerium-added manganese oxide on ${\nu}-Al_2O_3$ was more effective in oxidation of toluene than that without cerium. XRD result, it was observed that $MnO_2+CeO_2$ crystalline phases were present in the samples. For the used catalyst, a prominent feature has increased by XPS. TPR/TPO profiles of cerium-added manganese oxide on ${\nu}-Al_2O_3$ changed significantly increased at a lower temperature. The activity of $18.2 wt{\%}\;Mn+ 10.0 wt{\%}\;Ce/{\nu}-Al_2O_3$ increased at a lower temperature. The cerium added on the manganese catalysts has effects on the oxidation of toluene.

Oxygen-Response Ability of Hydrogen-Reduced Nanocrystalline Cerium Oxide

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.250-255
    • /
    • 2011
  • The potential application of ultrafine cerium oxide (ceria, $CeO_2$) as an oxygen gas sensor has been investigated. Ceria was synthesized by a thermochemical process: first, a precursor powder was prepared by spray drying cerium-nitrate solution. Heat treatment in air was then performed to evaporate the volatile components in the precursor, thereby forming nanostructured $CeO_2$ having a size of approximately 20 nm and specific surface area of 100 $m^2/g$. After sintering with loosely compacted samples, hydrogen-reduction heat treatment was performed at 773K to increase the degree of non-stoichiometry, x, in $CeO_{2-x}$. In this manner, the electrical conductivity and oxygen-response ability could be enhanced by increasing the number of oxygen vacancies. After the hydrogen reduction at 773K, $CeO_{1.5}$ was obtained with nearly the same initial crystalline size and surface. The response time $t_{90}$ measured at room temperature was extremely short at 4 s as compared to 14 s for normally sintered $CeO_2$. We believe that this hydrogen-reduced ceria can perform capably as a high-performance oxygen sensor with good response abilities even at room temperature.

Enhanced Catalytic Activity of Cu/Zn Catalyst by Ce Addition for Low Temperature Water Gas Shift Reaction (Ce 첨가에 따른 저온수성가스전이반응용 Cu/Zn 촉매의 활성 연구)

  • Byun, Chang Ki;Im, Hyo Bin;Park, Jihye;Baek, Jeonghun;Jeong, Jeongmin;Yoon, Wang Ria;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2015
  • In order to investigate the effect of cerium oxide addition, Cu-ZnO-CeO2 catalysts were prepared using co-precipitation method for water gas shift (WGS) reaction. A series of Cu-ZnO-CeO2 catalyst with fixed Cu Content (50 wt%, calculated as CuO) and a given ceria content (e.g., 0, 5, 10, 20, 30, 40 wt%, calculated as CeO2) were tested for catalytic activity at a GHSV of 95,541 h-1, and a temperature range of 200 to 400 ℃. Cu-ZnO-CeO2 catalysts were characterized by using BET, SEM, XRD, H2-TPR, and XPS analysis. Varying composition of Cu-ZnO-CeO2 catlysts led the difference characteristics such as Cu dispersion, and binding energy. The optimum 10 wt% doping of cerium facilitated catalyst reduction at lower temperature and improved the catalyst performance greatly in terms of CO conversion. Cerium oxide added catalyst showed enhanced activities at higher temperature when it compared with the catalyst without cerium oxide. Consequently, ceria addition of optimal composition leads to enhanced catalytic activity which is attributed to enhanced Cu dispersion, lower binding energy, and hindered Cu metal agglomeration.

Preparation of Nano Size Cerium Oxide from Cerium Carbonate (탄산(炭酸)세륨으로부터 나노크기 산화(酸化)세륨 제조연구(製造硏究))

  • Kim, Sung-Don;Kim, Chul-Joo;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.24-29
    • /
    • 2009
  • Since cerium carbonate becomes porous cerium oxide by releasing carbon dioxide and vapour steam during calcination of cerium carbonate, nano size cerium oxide can be obtained by milling calcined cerium carbonate. Therefore cerium carbonate [$Ce_2(CO_3)3{\cdot}XH_2O$] is used generally for the preparation of nano size cerium oxide. In order to obtain nano size cerium oxide from cerium carbonate prepared by reactive crystallization of cerium chloride solution and ammonium bicarnonate solution, the effects of experimental variables in the milling and calcination of cerium carbonate, such as calcination temperature, milling time, rpm of planetary mill, amount of dispersant and ball size for milling on the size of cerium oxide was investigated in this study. Cerium oxide prepared with the conditions of calcination temperature of $700^{\circ}C$, milling time of 5 hour was 160nm mean particle size.

$Si/In/CeO_2/Si$ 박막의 Indium 분포와 photoluminescence

  • 문병식;양지훈;김종걸;박종윤
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.104-104
    • /
    • 1999
  • Cerium dioxide 박막의 포토루미네슨에 관해서는 Cerium 4f band에서 oxygen 2p band로의 transition에 의한 발광(400nm) 현상이 보고되었다. 또한 Indium Oxide 박막의 발광(637nm0 현상이 보고되었다. 본 연구에서는 3족인 Indium을 Si/In/CeO2/Si 구조와 CeO2/Si 구조에 도핑하여 포토루미네슨스 현상을 관찰하였다. E-beam evaporator를 사용하여 Silicon(111) 기판에 Cerium dioxcide 박막을 성장시킨 경우의 두가지 시료를 분석하였다. 포토루미네슨스 관찰을 위해서 Ge-Cd laser (325nm)가 사용되었으며 Indium의 도핑양과 분포 상태를 알기 위해 SIMS와 ADP를 이용하여 분석하였다. Indium양에 대한 포토루미네슨스 변화와 열처리 후의 indium의 분포의 변화에 의한 포토루미네슨스 변화를 관찰하였다. 상온에서 In/CeO2/Si 시료와 Si/In/CeO2/Si 시료에 대한 포토루미네슨스 현상을 관찰한 결과 Si/In/CeO2/Si 시료에서만 500nm(2.5eV)에서 발광 현상이 관찰되었다. 도핑된 indium은 ADP에서는 검출되지 않고 SIMS에서만 검출되어 ADP의 detection range(1-0.1%) 이하의 양이 도핑된 것으로 추측된다. 도핑된 Indium의 양이 증가할수록 포토루미네슨스의 Intensity가 증가하였다. 또한 열처리(110$0^{\circ}C$, 1min) 후 포토루미네슨스의 peak위치가 390nm(3.18eV)로 변화하였다. Si/In/CeO2/Si에서 포토루미네슨스 현상이 관측되고 Intensity가 indium의 양에 의존하므로 완전하지 못한 Cerium dioxide의 CeOx 구조와 indium과의 결합이 포토루미네슨스의 원인으로 추측된다. 열처리 후 SIMS의 분석결과 indium의 분포가 변화하였으며 이는 포토루미네슨스의 변화의 원인으로 판단된다.

  • PDF

Effect of Cerium loading on Stability of Ni-bimetallic/ZrO2 Mixed Oxide Catalysts for CO Methanation to Produce Natural Gas

  • Bhavani, Annabathini Geetha;Youn, Hyunki
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.269-274
    • /
    • 2018
  • All the $Ni-Co-Ce-ZrO_2$ mixed oxides are prepared by co-precipitations methods. Methanation of CO and $H_2$ reaction is screened tested over different fractions of cerium (2, 4, 7 and 12 wt.%) over $Ni-Co/ZrO_2$ bimetallic catalysts are investigated. The mixed oxides are characterized by XRD, CO-Chemisorption, TGA and screened methanation of CO and $H_2$ at $360^{\circ}C$ for 3000 min on stream at typical ratio $CO:H_2=1:1$. In $Ni-Co/CeZrO_2$ series 2 wt.% Ce loading catalyst shows most promising catalyst for $CH_4$ selectivity than $CO_2$, which directs more stability with less coke formation. The high activity is attributed to the better bimetallic synergy and the well-developed crystalline phases of NiO, $ZrO_2$ and $Ce-ZrO_2$. Other bimetallic mixed oxides NCoZ, $NCoC^{4-12}Z$ has faster deactivation with low methanation activity. Finally, 2 wt.% Ce loading catalyst was found to be optimal coke resistant catalyst.

Oxychlorination of methane over FeOx/CeO2 catalysts

  • Kim, Jeongeun;Ryou, Youngseok;Hwang, Gyohyun;Bang, Jungup;Jung, Jongwook;Bang, Yongju;Kim, Do Heui
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2185-2190
    • /
    • 2018
  • Methane activation through oxychlorination is in the spotlight due to the relatively mild reaction conditions at atmospheric pressure and in the temperature range of $450-550^{\circ}C$. Although $CeO_2$ is known to exhibit good activity for methane oxychlorination, significant amounts of by-products such as $CO_2$, CO and carbon deposits are produced during the reaction over $CeO_2$. We investigated the effect of iron in $FeO_x/CeO_2$ catalysts on methane oxychlorination. $FeO_x/CeO_2$ with 3 wt% iron shows the maximum yield at $510^{\circ}C$ with 23% conversion of methane and 65% selectivity of chloromethane. XRD and $H_2$ TPR results indicate that iron-cerium solid solution was formed, resulting in the production of more easily reduced cerium oxide and the suppression of catalysts sintering during the reaction. Furthermore, the selectivity of by-products decreased more significantly over $FeO_x/CeO_2$ than cerium oxide, which can be attributed to the facilitation of HCl oxidation arising from the enhanced reducibility of the former sample.

Fabrication and thermal conductivity of CeO2-Ce3Si2 composite

  • Ahn, Jungsu;Kim, Gyeonghun;Jung, Yunsong;Ahn, Sangjoon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.583-591
    • /
    • 2021
  • Various compositions of CeO2-Ce3Si2 (0, 10, 30, 50, and 100 wt%Ce3Si2) composites were fabricated using conventional sintering and spark plasma sintering. Lower relative density, enhanced interdiffusion of oxygen and silicon, and silicide agglomerations from the congruent melting of Ce3Si2 at 1390 ℃ were only observed from conventionally-sintered pellets. Thermal conductivity of spark plasma sintered CeO2-Ce3Si2 composites was calculated from the measured thermal diffusivity, specific heat, and density, which exhibited dense (>90 %TD) and homogeneous microstructure. The composite with 50 wt%Ce3Si2 exhibited 55% higher thermal conductivity than CeO2 at 500 ℃, and 81% higher at 1000 ℃.

Fabrication and thermal stability of flower-like CeO2 with high surface area via anisotropic crystallization of carbonate precipitation (탄산염 침전 전구체의 결정 이방성 제어를 통한 고 비표면적 flower-like CeO2 분말의 제조 및 고온 안정성 평가)

  • Kim, Hanbit;Shin, Tae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.160-166
    • /
    • 2019
  • Cerium oxide ($CeO_2$, often called as Ceria) is one of the valuable rare earth oxide materials, which has been widely used for high temperature applications such as solid oxide fuel cells, automotive three-way catalysts and oxygen storage capacity. Considering those application, it is important to improve high redox and thermal stability with high surface morphology because the high surface area of $CeO_2$ could improve the catalytic reactivity at high temperature conditions. Herein we successfully fabricated hierarchical flower-like $CeO_2$ deposited via controlling pathway of precipitation reaction to supply carbonate ion lead to the flower-like morphology. The hexagonal lattice system of precipitated precursor shows better thermal stability then orthorhombic one during thermal cycling condition.