DOI QR코드

DOI QR Code

Fabrication and thermal conductivity of CeO2-Ce3Si2 composite

  • Ahn, Jungsu (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Kim, Gyeonghun (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Jung, Yunsong (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Ahn, Sangjoon (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2020.01.31
  • Accepted : 2020.07.12
  • Published : 2021.02.25

Abstract

Various compositions of CeO2-Ce3Si2 (0, 10, 30, 50, and 100 wt%Ce3Si2) composites were fabricated using conventional sintering and spark plasma sintering. Lower relative density, enhanced interdiffusion of oxygen and silicon, and silicide agglomerations from the congruent melting of Ce3Si2 at 1390 ℃ were only observed from conventionally-sintered pellets. Thermal conductivity of spark plasma sintered CeO2-Ce3Si2 composites was calculated from the measured thermal diffusivity, specific heat, and density, which exhibited dense (>90 %TD) and homogeneous microstructure. The composite with 50 wt%Ce3Si2 exhibited 55% higher thermal conductivity than CeO2 at 500 ℃, and 81% higher at 1000 ℃.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. NRF-2016R1A5A1013919).

References

  1. A.A.E. Abdelhameed, X.H. Nguyen, J. Lee, Y. Kim, Feasibility of passive autonomous frequency control operation in a soluble-boron-free small PWR, Ann. Nucl. Energy 116 (2018) 319-333. https://doi.org/10.1016/j.anucene.2018.02.036
  2. E.S. Solntceva, M.L. Taubin, V.I. Vybyvanets, I.E. Galyov, V.G. Baranov, O.V. Homyakov, A.V. Tenishev, Thermal conductivity of perspective fuel based on uranium nitride, Ann. Nucl. Energy 87 (2016) 799-802. https://doi.org/10.1016/j.anucene.2014.08.011
  3. J.T. White, A.T. Nelson, J.T. Dunwoody, D.D. Byler, D.J. Safarik, K.J. McClellan, Thermophysical properties of U3Si2 to 1773 K, J. Nucl. Mater. 464 (2015) 275-280. https://doi.org/10.1016/j.jnucmat.2015.04.031
  4. R. De Coninck, W. Van Lierde, A. Gijs, Uranium carbide: thermal diffusivity, thermal conductivity and spectral emissivity at high temperatures, J. Nucl. Mater. 57 (1975) 69-76. https://doi.org/10.1016/0022-3115(75)90179-8
  5. B.T.M. Willis, Structures of UO2, UO2+xand U4O9 by neutron diffraction, J. Phys. 25 (5) (1964) 431-439. https://doi.org/10.1051/jphys:01964002505043100
  6. A. Bumajdad, J. Eastoe, A. Mathew, Cerium oxide nanoparticles prepared in self-assembled systems, Adv. Colloid Interface Sci. 147-148 (2009) 56-66. https://doi.org/10.1016/j.cis.2008.10.004
  7. B.A. Munitz, A.B. Gokhale, G.J. Abbaschian, The Ce-Si ( cerium-silicon ), System 10 (1989) 73-78.
  8. J. Rosales, Characterization of U3Si2 Surrogates to Predict U3Si2 Additive Manufactured Microstructures, 2018.
  9. R.K. Viswanadham, S.K. Mannan, S. Kumar, M.M. Laboratories, Mechanical alloying behavior in group V transition metal/silicon systems, Scripta Metall. 22 (1988) 1011-1014. https://doi.org/10.1016/S0036-9748(88)80093-0
  10. S. Yagoubi, S. Heathman, A. Svane, G. Vaitheeswaran, P. Heines, J.C. Griveau, T. Le Bihan, M. Idiri, F. Wastin, R. Caciuffo, High pressure studies on uranium and thorium silicide compounds: experiment and theory, J. Alloys Compd. 546 (2013).
  11. J. Rolecek, S. Foral, K. Katovsky, D. Salamon, A feasibility study of using CeO2 as a surrogate material during the investigation of UO2 thermal conductivity enhancement, Adv. Appl. Ceram. 116 (2017) 123-131. https://doi.org/10.1080/17436753.2016.1264122
  12. G.A. Alanko, B. Jaques, A. Bateman, D.P. Butt, Mechanochemical synthesis and spark plasma sintering of the cerium silicides, J. Alloys Compd. 616 (2014) 306-311. https://doi.org/10.1016/j.jallcom.2014.07.129
  13. James Blanchard, D. Butt, M. Meyer, P. Xu, Development of Advanced High Uranium Density Fuels for Light Water Reactors, 2016.
  14. G.A. Alanko, D.P. Butt, Mechanochemical synthesis of uranium sesquisilicide, J. Nucl. Mater. 451 (2014) 243-248. https://doi.org/10.1016/j.jnucmat.2014.03.042
  15. FIZ Karlsruhe. Germany, ICSD - Inorganic Crystal Structure Database.
  16. Y. Kim, J. Park, J. Cleveland, Thermophysical Properties Database of Materials for Light Water Reactors and Heavy Water Reactors, 2006.
  17. D.R. Mullins, The Surface Chemistry of Cerium Oxide, 2014.
  18. R.A. Prasad, Spark Plasma Sintering of Cerium Dioxide and its Composites, 2017.
  19. D. Galusek, K. Ghillanyova, Ceramic oxides, Ceram. Sci. Technol. 2 (2010). Mater. Prop.
  20. T. Zhang, P. Hing, H. Huang, J. Kilner, Sintering study on commercial CeO2 powder with small amount of MnO2 doping, Mater. Lett. 57 (2002) 507-512. https://doi.org/10.1016/S0167-577X(02)00820-0
  21. Y.C. Zhou, Hydrothermal synthesis and sintering of ultrafine CeO2 powders, J. Mater. Res. 8 (1993) 1680-1686. https://doi.org/10.1557/JMR.1993.1680
  22. P.A. Lessing, Oxidation Protection of Uranium Nitride Fuel Using Liquid Phase Sintering, 2012.
  23. K.D. Johnson, A.M. Raftery, D.A. Lopes, J. Wallenius, Fabrication and microstructural analysis of UN-U3Si2 composites for accident tolerant fuel applications, J. Nucl. Mater. 477 (2016) 18-23. https://doi.org/10.1016/j.jnucmat.2016.05.004
  24. J.T. White, A.W. Travis, J.T. Dunwoody, A.T. Nelson, Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms, J. Nucl. Mater. 495 (2017) 463-474. https://doi.org/10.1016/j.jnucmat.2017.08.041
  25. G. Lee, E.A. Olevsky, C. Maniere, A. Maximenko, O. Izhvanov, C. Back, J. Mckittrick, Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering Acta Materialis Effect of electric current on densi fi cation behavior of conductive ceramic powders consolidated by spark plasma sintering, Acta Mater. 144 (2017) 524-533. https://doi.org/10.1016/j.actamat.2017.11.010
  26. Y. Achenani, M. Saadaoui, A. Cheddadi, G. Bonnefont, G. Fantozzi, Finite element modeling of spark plasma sintering : application to the reduction of temperature inhomogeneities , case of alumina, JMADE 116 (2016) 504-514.
  27. E.S. Folias, M. Hohn, T. Nicholas, Predicting crack initiation in composite material systems due to a thermal expansion mismatch, Int. J. Fract. 93 (1998) 335-349. https://doi.org/10.1023/A:1017160807854
  28. F. Delale, H. Boduroglu, Effect of thermal expansion anisotropy on microcracking in ceramic composites, Eng. Fract. Mech. 39 (1991) 45-60. https://doi.org/10.1016/0013-7944(91)90021-R
  29. J. Williams, Sintering of uranium oxides of composition UO2 to U3O8 in various atmospheres, J. Nucl. Mater. 1 (1959) 28-38. https://doi.org/10.1016/0022-3115(59)90008-X